利用二阶和高阶统计量进行信号分离

M. Fahmy, G. El-Raheem, A. El-Sallam
{"title":"利用二阶和高阶统计量进行信号分离","authors":"M. Fahmy, G. El-Raheem, A. El-Sallam","doi":"10.1109/NRSC.1999.760921","DOIUrl":null,"url":null,"abstract":"This paper presents two methods for signal separation. One is based on second order statistics while the other is based on fourth and higher order statistics. In either method, the fundamental criterion for separation relies on reducing to zero or at least minimizing, either the output cross correlation or cross cumulant functions, respectively. This is achieved through designing a decoupling multi-input multi-output system. The parameters of this system are determined through solving-in a least squares sense-a linearized set of equations describing either the cross correlation or cross cumulant functions when evaluated for different lags. An alternative rapidly convergent adaptive algorithm is also described for the minimization of each respective function. The paper considers also both FIR and IIR representation of the decoupling system. It shows that using IIR functions in the decoupling system does not offer any merit over the FIR case. Illustrative examples are given to show the performance of the proposed algorithms.","PeriodicalId":250544,"journal":{"name":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Signal separation using second and high order statistics\",\"authors\":\"M. Fahmy, G. El-Raheem, A. El-Sallam\",\"doi\":\"10.1109/NRSC.1999.760921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two methods for signal separation. One is based on second order statistics while the other is based on fourth and higher order statistics. In either method, the fundamental criterion for separation relies on reducing to zero or at least minimizing, either the output cross correlation or cross cumulant functions, respectively. This is achieved through designing a decoupling multi-input multi-output system. The parameters of this system are determined through solving-in a least squares sense-a linearized set of equations describing either the cross correlation or cross cumulant functions when evaluated for different lags. An alternative rapidly convergent adaptive algorithm is also described for the minimization of each respective function. The paper considers also both FIR and IIR representation of the decoupling system. It shows that using IIR functions in the decoupling system does not offer any merit over the FIR case. Illustrative examples are given to show the performance of the proposed algorithms.\",\"PeriodicalId\":250544,\"journal\":{\"name\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.1999.760921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1999.760921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了两种信号分离方法。一种是基于二阶统计量,而另一种是基于四阶和更高阶统计量。在任何一种方法中,分离的基本准则都依赖于分别将输出相互关系或交叉累积函数减小到零或至少最小化。这是通过设计一个解耦的多输入多输出系统实现的。该系统的参数是通过求解—在最小二乘意义上—一组线性化的方程来确定的,这些方程描述了在评估不同滞后时的相互关联或交叉累积函数。本文还描述了一种可选的快速收敛自适应算法,用于最小化每个函数。本文还考虑了解耦系统的FIR和IIR表示。结果表明,在解耦系统中使用IIR函数与FIR函数相比没有任何优点。通过实例说明了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal separation using second and high order statistics
This paper presents two methods for signal separation. One is based on second order statistics while the other is based on fourth and higher order statistics. In either method, the fundamental criterion for separation relies on reducing to zero or at least minimizing, either the output cross correlation or cross cumulant functions, respectively. This is achieved through designing a decoupling multi-input multi-output system. The parameters of this system are determined through solving-in a least squares sense-a linearized set of equations describing either the cross correlation or cross cumulant functions when evaluated for different lags. An alternative rapidly convergent adaptive algorithm is also described for the minimization of each respective function. The paper considers also both FIR and IIR representation of the decoupling system. It shows that using IIR functions in the decoupling system does not offer any merit over the FIR case. Illustrative examples are given to show the performance of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信