基于移动窗口的多扫描多目标跟踪方法

D. Moratuwage, Changbeom Shim, Yuthika Punchihewa
{"title":"基于移动窗口的多扫描多目标跟踪方法","authors":"D. Moratuwage, Changbeom Shim, Yuthika Punchihewa","doi":"10.1109/ICCAIS56082.2022.9990443","DOIUrl":null,"url":null,"abstract":"Multi-target state estimation refers to estimating the number of targets and their trajectories in a surveillance area using measurements contaminated with noise and clutter. In the Bayesian paradigm, the most common approach to multi-target estimation is by recursively propagating the multi-target filtering density, updating it with current measurements set at each timestep. In comparison, multi-target smoothing uses all measurements up to current timestep and recursively propagates the entire history of multi-target state using the multi-target posterior density. The recent Generalized Labeled Multi-Bernoulli (GLMB) smoother is an analytic recursion that propagate the labeled multi-object posterior by recursively updating labels to measurement association maps from the beginning to current timestep. In this paper, we propose a moving window based solution for multi-target tracking using the GLMB smoother, so that only those association maps in a window (consisting of latest maps) get updated, resulting in an efficient approximate solution suitable for practical implementations.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Moving Window Based Approach to Multi-scan Multi-Target Tracking\",\"authors\":\"D. Moratuwage, Changbeom Shim, Yuthika Punchihewa\",\"doi\":\"10.1109/ICCAIS56082.2022.9990443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target state estimation refers to estimating the number of targets and their trajectories in a surveillance area using measurements contaminated with noise and clutter. In the Bayesian paradigm, the most common approach to multi-target estimation is by recursively propagating the multi-target filtering density, updating it with current measurements set at each timestep. In comparison, multi-target smoothing uses all measurements up to current timestep and recursively propagates the entire history of multi-target state using the multi-target posterior density. The recent Generalized Labeled Multi-Bernoulli (GLMB) smoother is an analytic recursion that propagate the labeled multi-object posterior by recursively updating labels to measurement association maps from the beginning to current timestep. In this paper, we propose a moving window based solution for multi-target tracking using the GLMB smoother, so that only those association maps in a window (consisting of latest maps) get updated, resulting in an efficient approximate solution suitable for practical implementations.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多目标状态估计是指利用噪声和杂波污染的测量值估计监视区域内目标的数量及其轨迹。在贝叶斯范式中,最常见的多目标估计方法是递归地传播多目标过滤密度,并在每个时间步使用当前测量值进行更新。相比之下,多目标平滑使用截至当前时间步长的所有测量值,并使用多目标后验密度递归地传播多目标状态的整个历史。最近的广义标记多伯努利平滑是一种解析递归平滑,它通过从开始到当前时间步递归地更新标记到测量关联映射来传播标记的多目标后验。在本文中,我们提出了一种基于移动窗口的多目标跟踪解决方案,使用GLMB平滑器,使得只有窗口中的关联映射(由最新映射组成)得到更新,从而得到一个适合实际实现的高效近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Moving Window Based Approach to Multi-scan Multi-Target Tracking
Multi-target state estimation refers to estimating the number of targets and their trajectories in a surveillance area using measurements contaminated with noise and clutter. In the Bayesian paradigm, the most common approach to multi-target estimation is by recursively propagating the multi-target filtering density, updating it with current measurements set at each timestep. In comparison, multi-target smoothing uses all measurements up to current timestep and recursively propagates the entire history of multi-target state using the multi-target posterior density. The recent Generalized Labeled Multi-Bernoulli (GLMB) smoother is an analytic recursion that propagate the labeled multi-object posterior by recursively updating labels to measurement association maps from the beginning to current timestep. In this paper, we propose a moving window based solution for multi-target tracking using the GLMB smoother, so that only those association maps in a window (consisting of latest maps) get updated, resulting in an efficient approximate solution suitable for practical implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信