高效VLSI实现模(2/sup n//spl plusmn/1)加法和乘法

R. Zimmermann
{"title":"高效VLSI实现模(2/sup n//spl plusmn/1)加法和乘法","authors":"R. Zimmermann","doi":"10.1109/ARITH.1999.762841","DOIUrl":null,"url":null,"abstract":"New VLSI circuit architectures for addition and multiplication modulo (2/sup n/-1) and (2/sup n/+1) are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are improved for higher speed and regularity. These allow the use of common multiplier speed-up techniques like Wallace-tree addition and Booth recoding, resulting in the fastest known modulo multipliers. Finally, a high-performance modulo multiplier-adder for the IDEA block cipher is presented. The resulting circuits are compared qualitatively and quantitatively, i.e., in a standard-cell technology, with existing solutions and ordinary integer adders and multipliers.","PeriodicalId":434169,"journal":{"name":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"302","resultStr":"{\"title\":\"Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication\",\"authors\":\"R. Zimmermann\",\"doi\":\"10.1109/ARITH.1999.762841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New VLSI circuit architectures for addition and multiplication modulo (2/sup n/-1) and (2/sup n/+1) are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are improved for higher speed and regularity. These allow the use of common multiplier speed-up techniques like Wallace-tree addition and Booth recoding, resulting in the fastest known modulo multipliers. Finally, a high-performance modulo multiplier-adder for the IDEA block cipher is presented. The resulting circuits are compared qualitatively and quantitatively, i.e., in a standard-cell technology, with existing solutions and ordinary integer adders and multipliers.\",\"PeriodicalId\":434169,\"journal\":{\"name\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"302\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1999.762841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1999.762841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 302

摘要

提出了用于加法和乘法模(2/sup n/-1)和(2/sup n/+1)的新型VLSI电路结构,允许实现高效的组合和流水线电路用于模块化算法。结果表明,并行前缀加法器结构非常适合于实现用于模加法的快速绕端进位加法器。现有的模乘法器架构改进了更高的速度和规律性。这允许使用常见的乘法器加速技术,如华莱士树加法和布斯重编码,从而产生已知最快的模乘法器。最后,提出了一种用于IDEA分组密码的高性能模乘加器。所得到的电路在定性和定量上进行比较,即在标准单元技术中,与现有的解决方案和普通的整数加法器和乘法器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication
New VLSI circuit architectures for addition and multiplication modulo (2/sup n/-1) and (2/sup n/+1) are proposed that allow the implementation of highly efficient combinational and pipelined circuits for modular arithmetic. It is shown that the parallel-prefix adder architecture is well suited to realize fast end-around-carry adders used for modulo addition. Existing modulo multiplier architectures are improved for higher speed and regularity. These allow the use of common multiplier speed-up techniques like Wallace-tree addition and Booth recoding, resulting in the fastest known modulo multipliers. Finally, a high-performance modulo multiplier-adder for the IDEA block cipher is presented. The resulting circuits are compared qualitatively and quantitatively, i.e., in a standard-cell technology, with existing solutions and ordinary integer adders and multipliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信