基于svm的高密度SURF和光谱信息的高分辨率城市卫星图像分类

Hanan Anzid, Gaëtan Le Goïc, A. Bekkari, A. Mansouri, D. Mammass
{"title":"基于svm的高密度SURF和光谱信息的高分辨率城市卫星图像分类","authors":"Hanan Anzid, Gaëtan Le Goïc, A. Bekkari, A. Mansouri, D. Mammass","doi":"10.1145/3289402.3289502","DOIUrl":null,"url":null,"abstract":"Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.","PeriodicalId":199959,"journal":{"name":"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information\",\"authors\":\"Hanan Anzid, Gaëtan Le Goïc, A. Bekkari, A. Mansouri, D. Mammass\",\"doi\":\"10.1145/3289402.3289502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.\",\"PeriodicalId\":199959,\"journal\":{\"name\":\"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289402.3289502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289402.3289502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以图像分类为重点的遥感技术取得了长足的进步,日益受到遥感界的重视。结合多种提取的特征,利用支持向量机(SVM)成功地应用于高分辨率城市卫星图像。在本文中,我们提出了一种方法,该方法首次在城市图像的常见场景上使用逐像素SURF描述特征与Cielab空间中的光谱信息相结合,从而促进了一种执行分类。与单独使用的两类特征相比,该方法具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information
Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信