{"title":"预期调度:一种磁盘调度框架,用于克服同步I/O中的欺骗性空闲","authors":"Sitaram Iyer, P. Druschel","doi":"10.1145/502034.502046","DOIUrl":null,"url":null,"abstract":"Disk schedulers in current operating systems are generally work-conserving, i.e., they schedule a request as soon as the previous request has finished. Such schedulers often require multiple outstanding requests from each process to meet system-level goals of performance and quality of service. Unfortunately, many common applications issue disk read requests in a synchronous manner, interspersing successive requests with short periods of computation. The scheduler chooses the next request too early; this induces deceptive idleness, a condition where the scheduler incorrectly assumes that the last request issuing process has no further requests, and becomes forced to switch to a request from another process.We propose the anticipatory disk scheduling framework to solve this problem in a simple, general and transparent way, based on the non-work-conserving scheduling discipline. Our FreeBSD implementation is observed to yield large benefits on a range of microbenchmarks and real workloads. The Apache webserver delivers between 29% and 71% more throughput on a disk-intensive workload. The Andrew filesystem benchmark runs faster by 8%, due to a speedup of 54% in its read-intensive phase. Variants of the TPC-B database benchmark exhibit improvements between 2% and 60%. Proportional-share schedulers are seen to achieve their contracts accurately and efficiently.","PeriodicalId":263344,"journal":{"name":"Proceedings of the eighteenth ACM symposium on Operating systems principles","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"281","resultStr":"{\"title\":\"Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O\",\"authors\":\"Sitaram Iyer, P. Druschel\",\"doi\":\"10.1145/502034.502046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disk schedulers in current operating systems are generally work-conserving, i.e., they schedule a request as soon as the previous request has finished. Such schedulers often require multiple outstanding requests from each process to meet system-level goals of performance and quality of service. Unfortunately, many common applications issue disk read requests in a synchronous manner, interspersing successive requests with short periods of computation. The scheduler chooses the next request too early; this induces deceptive idleness, a condition where the scheduler incorrectly assumes that the last request issuing process has no further requests, and becomes forced to switch to a request from another process.We propose the anticipatory disk scheduling framework to solve this problem in a simple, general and transparent way, based on the non-work-conserving scheduling discipline. Our FreeBSD implementation is observed to yield large benefits on a range of microbenchmarks and real workloads. The Apache webserver delivers between 29% and 71% more throughput on a disk-intensive workload. The Andrew filesystem benchmark runs faster by 8%, due to a speedup of 54% in its read-intensive phase. Variants of the TPC-B database benchmark exhibit improvements between 2% and 60%. Proportional-share schedulers are seen to achieve their contracts accurately and efficiently.\",\"PeriodicalId\":263344,\"journal\":{\"name\":\"Proceedings of the eighteenth ACM symposium on Operating systems principles\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"281\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the eighteenth ACM symposium on Operating systems principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/502034.502046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the eighteenth ACM symposium on Operating systems principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/502034.502046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O
Disk schedulers in current operating systems are generally work-conserving, i.e., they schedule a request as soon as the previous request has finished. Such schedulers often require multiple outstanding requests from each process to meet system-level goals of performance and quality of service. Unfortunately, many common applications issue disk read requests in a synchronous manner, interspersing successive requests with short periods of computation. The scheduler chooses the next request too early; this induces deceptive idleness, a condition where the scheduler incorrectly assumes that the last request issuing process has no further requests, and becomes forced to switch to a request from another process.We propose the anticipatory disk scheduling framework to solve this problem in a simple, general and transparent way, based on the non-work-conserving scheduling discipline. Our FreeBSD implementation is observed to yield large benefits on a range of microbenchmarks and real workloads. The Apache webserver delivers between 29% and 71% more throughput on a disk-intensive workload. The Andrew filesystem benchmark runs faster by 8%, due to a speedup of 54% in its read-intensive phase. Variants of the TPC-B database benchmark exhibit improvements between 2% and 60%. Proportional-share schedulers are seen to achieve their contracts accurately and efficiently.