{"title":"氟处理正常关闭InAlN/GaN Fin-MOSHEMT","authors":"Yi-Ping Huang, Ching-Sung Lee, W. Hsu","doi":"10.1109/DRC50226.2020.9135151","DOIUrl":null,"url":null,"abstract":"GaN-based HEMTs feature a lot of superior material properties, including high electron mobility, wide band-gap, and large breakdown field. These properties are very suitable for power electronic applications. However, due to the high two dimensional electron gas (2DEG) density, a conventional GaN HEMT is an inherently normally-on device. Considering safety design in the power electronic systems, high performance normally-off GaN HEMT s are needed [1] . FinFet (tri-gate) structure has recently been applied to GaN HEMTs for the normally-off operation. However, a conventional FinFet (tri-gate) GaN HEMT requires very small channel widths to achieve the normally-off operation. This needs very critical process conditions and could cause the on-resistance (R on ) to be obviouslhy degraded [2] . In this study, an InAlN/GaN fin-MOSHEMT combined with fluorine treatment is demonstrated. It doesn’t require very small channel widths to achieve a normally-off HEMT while having excellent performances.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Normally-Off InAlN/GaN Fin-MOSHEMT with Fluorine Treatment\",\"authors\":\"Yi-Ping Huang, Ching-Sung Lee, W. Hsu\",\"doi\":\"10.1109/DRC50226.2020.9135151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN-based HEMTs feature a lot of superior material properties, including high electron mobility, wide band-gap, and large breakdown field. These properties are very suitable for power electronic applications. However, due to the high two dimensional electron gas (2DEG) density, a conventional GaN HEMT is an inherently normally-on device. Considering safety design in the power electronic systems, high performance normally-off GaN HEMT s are needed [1] . FinFet (tri-gate) structure has recently been applied to GaN HEMTs for the normally-off operation. However, a conventional FinFet (tri-gate) GaN HEMT requires very small channel widths to achieve the normally-off operation. This needs very critical process conditions and could cause the on-resistance (R on ) to be obviouslhy degraded [2] . In this study, an InAlN/GaN fin-MOSHEMT combined with fluorine treatment is demonstrated. It doesn’t require very small channel widths to achieve a normally-off HEMT while having excellent performances.\",\"PeriodicalId\":397182,\"journal\":{\"name\":\"2020 Device Research Conference (DRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC50226.2020.9135151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normally-Off InAlN/GaN Fin-MOSHEMT with Fluorine Treatment
GaN-based HEMTs feature a lot of superior material properties, including high electron mobility, wide band-gap, and large breakdown field. These properties are very suitable for power electronic applications. However, due to the high two dimensional electron gas (2DEG) density, a conventional GaN HEMT is an inherently normally-on device. Considering safety design in the power electronic systems, high performance normally-off GaN HEMT s are needed [1] . FinFet (tri-gate) structure has recently been applied to GaN HEMTs for the normally-off operation. However, a conventional FinFet (tri-gate) GaN HEMT requires very small channel widths to achieve the normally-off operation. This needs very critical process conditions and could cause the on-resistance (R on ) to be obviouslhy degraded [2] . In this study, an InAlN/GaN fin-MOSHEMT combined with fluorine treatment is demonstrated. It doesn’t require very small channel widths to achieve a normally-off HEMT while having excellent performances.