人类异常行为识别的全局时间金字塔

Shengnan Chen, Yuanyao Lu, Pengju Zhang, Yixian Fu
{"title":"人类异常行为识别的全局时间金字塔","authors":"Shengnan Chen, Yuanyao Lu, Pengju Zhang, Yixian Fu","doi":"10.1117/12.2692166","DOIUrl":null,"url":null,"abstract":"With the development of monitoring technology and the improvement of people's security awareness, intelligent human abnormal action recognition technology in the field of action recognition is increasingly high. In most cases, abnormal human action may have little difference in appearance compared with normal behavior, so the control of visual rhythm information becomes an important factor affecting action recognition, but people often focus on the appearance information of the action and ignore the rhythm information. In this paper, we introduce the temporal pyramid module to process the visual tempos information, meanwhile, the traditional LSTM local history information transfer method is very easy to lose the context information, which is not conducive to the grasp of global information and thus will greatly affect the processing effect of the temporal pyramid. This paper introduces a non-local neural network module to enhance the network's ability to grasp global information and the model's long-range modeling capability, which is used to supplement the temporal pyramid module. Finally, this paper uses the mainstream anomaly dataset UCF-Crime to test the network performance, and the improved network model recognition accuracy AUC reaches 0.82, which is better than other stateof-the-art methods.","PeriodicalId":361127,"journal":{"name":"International Conference on Images, Signals, and Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global temporal pyramid for human abnormal action recognition\",\"authors\":\"Shengnan Chen, Yuanyao Lu, Pengju Zhang, Yixian Fu\",\"doi\":\"10.1117/12.2692166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of monitoring technology and the improvement of people's security awareness, intelligent human abnormal action recognition technology in the field of action recognition is increasingly high. In most cases, abnormal human action may have little difference in appearance compared with normal behavior, so the control of visual rhythm information becomes an important factor affecting action recognition, but people often focus on the appearance information of the action and ignore the rhythm information. In this paper, we introduce the temporal pyramid module to process the visual tempos information, meanwhile, the traditional LSTM local history information transfer method is very easy to lose the context information, which is not conducive to the grasp of global information and thus will greatly affect the processing effect of the temporal pyramid. This paper introduces a non-local neural network module to enhance the network's ability to grasp global information and the model's long-range modeling capability, which is used to supplement the temporal pyramid module. Finally, this paper uses the mainstream anomaly dataset UCF-Crime to test the network performance, and the improved network model recognition accuracy AUC reaches 0.82, which is better than other stateof-the-art methods.\",\"PeriodicalId\":361127,\"journal\":{\"name\":\"International Conference on Images, Signals, and Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Images, Signals, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2692166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Images, Signals, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2692166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着监控技术的发展和人们安全意识的提高,智能人体异常动作识别技术在动作识别领域的应用越来越高。在大多数情况下,人类异常的动作与正常的行为相比,在外观上可能差别不大,因此对视觉节奏信息的控制成为影响动作识别的重要因素,但人们往往只关注动作的外观信息而忽略了节奏信息。本文引入时间金字塔模块对视觉节奏信息进行处理,同时传统的LSTM局部历史信息传递方法极易丢失上下文信息,不利于全局信息的掌握,从而极大地影响时间金字塔的处理效果。本文引入非局部神经网络模块,增强网络对全局信息的把握能力和模型的远程建模能力,作为时间金字塔模块的补充。最后,本文使用主流异常数据集UCF-Crime对网络性能进行了测试,改进后的网络模型识别准确率AUC达到0.82,优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global temporal pyramid for human abnormal action recognition
With the development of monitoring technology and the improvement of people's security awareness, intelligent human abnormal action recognition technology in the field of action recognition is increasingly high. In most cases, abnormal human action may have little difference in appearance compared with normal behavior, so the control of visual rhythm information becomes an important factor affecting action recognition, but people often focus on the appearance information of the action and ignore the rhythm information. In this paper, we introduce the temporal pyramid module to process the visual tempos information, meanwhile, the traditional LSTM local history information transfer method is very easy to lose the context information, which is not conducive to the grasp of global information and thus will greatly affect the processing effect of the temporal pyramid. This paper introduces a non-local neural network module to enhance the network's ability to grasp global information and the model's long-range modeling capability, which is used to supplement the temporal pyramid module. Finally, this paper uses the mainstream anomaly dataset UCF-Crime to test the network performance, and the improved network model recognition accuracy AUC reaches 0.82, which is better than other stateof-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信