具有两个数值精度参数的优化问题的求解算法

E. Polak, O. Pironneau
{"title":"具有两个数值精度参数的优化问题的求解算法","authors":"E. Polak, O. Pironneau","doi":"10.1109/CDC.2003.1272906","DOIUrl":null,"url":null,"abstract":"We generalize the theory of consistent approximations and algorithm implementations presented in [E Polak, 1993] so as to enable us to solve infinite-dimensional optimization problems whose discretization involves two precision parameters. A typical example of such a problem is an optimal control problem with initial and final value constraints. Our main result is a two-discretization parameter algorithm model, with an associated convergence theorem. We illustrate its applicability by implementing it using an approximate steepest descent method and applying it to a simple two point boundary value optimal control problem. Our numerical results (not only the ones in this paper) show that algorithms based on our new model perform quite well and are fairly insensitive to the selection of user-set parameters. Also, they appear to be superior to some alternative, ad hoc schemes.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for the solution of optimization problems with two numerical precision parameters\",\"authors\":\"E. Polak, O. Pironneau\",\"doi\":\"10.1109/CDC.2003.1272906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the theory of consistent approximations and algorithm implementations presented in [E Polak, 1993] so as to enable us to solve infinite-dimensional optimization problems whose discretization involves two precision parameters. A typical example of such a problem is an optimal control problem with initial and final value constraints. Our main result is a two-discretization parameter algorithm model, with an associated convergence theorem. We illustrate its applicability by implementing it using an approximate steepest descent method and applying it to a simple two point boundary value optimal control problem. Our numerical results (not only the ones in this paper) show that algorithms based on our new model perform quite well and are fairly insensitive to the selection of user-set parameters. Also, they appear to be superior to some alternative, ad hoc schemes.\",\"PeriodicalId\":371853,\"journal\":{\"name\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2003.1272906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1272906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推广了[E Polak, 1993]中提出的一致逼近理论和算法实现,从而使我们能够解决离散化涉及两个精度参数的无限维优化问题。这类问题的一个典型例子是具有初始值和最终值约束的最优控制问题。我们的主要结果是一个双离散参数算法模型,并给出了相应的收敛定理。我们通过使用近似最陡下降法实现它并将其应用于一个简单的两点边值最优控制问题来说明它的适用性。我们的数值结果(不仅仅是本文中的结果)表明,基于我们的新模型的算法表现相当好,并且对用户设置参数的选择相当不敏感。此外,它们似乎优于一些可选的临时方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for the solution of optimization problems with two numerical precision parameters
We generalize the theory of consistent approximations and algorithm implementations presented in [E Polak, 1993] so as to enable us to solve infinite-dimensional optimization problems whose discretization involves two precision parameters. A typical example of such a problem is an optimal control problem with initial and final value constraints. Our main result is a two-discretization parameter algorithm model, with an associated convergence theorem. We illustrate its applicability by implementing it using an approximate steepest descent method and applying it to a simple two point boundary value optimal control problem. Our numerical results (not only the ones in this paper) show that algorithms based on our new model perform quite well and are fairly insensitive to the selection of user-set parameters. Also, they appear to be superior to some alternative, ad hoc schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信