一种改进的先验MMSE谱减方法用于语音增强

Ning Cheng, Wenju Liu, Bo Xu
{"title":"一种改进的先验MMSE谱减方法用于语音增强","authors":"Ning Cheng, Wenju Liu, Bo Xu","doi":"10.1109/IWSDA.2007.4408401","DOIUrl":null,"url":null,"abstract":"This paper presents a modification of conventional minimum mean squared error (MMSE) spectral subtraction algorithm by introducing an adaptive averaging factor to accurately estimate the a priori SNR. Performance of the modified a priori SNR is evaluated by comparing with conventional spectral subtraction algorithm. Improved results are obtained in terms of speech quality measures for various types of noise when the time-frequency varying averaging factor, proposed in this paper, is adapted in the conventional subtraction rules.","PeriodicalId":303512,"journal":{"name":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved A Priori MMSE Spectral Subtraction Method for Speech Enhancement\",\"authors\":\"Ning Cheng, Wenju Liu, Bo Xu\",\"doi\":\"10.1109/IWSDA.2007.4408401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a modification of conventional minimum mean squared error (MMSE) spectral subtraction algorithm by introducing an adaptive averaging factor to accurately estimate the a priori SNR. Performance of the modified a priori SNR is evaluated by comparing with conventional spectral subtraction algorithm. Improved results are obtained in terms of speech quality measures for various types of noise when the time-frequency varying averaging factor, proposed in this paper, is adapted in the conventional subtraction rules.\",\"PeriodicalId\":303512,\"journal\":{\"name\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2007.4408401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2007.4408401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种改进的最小均方误差(MMSE)谱减算法,通过引入自适应平均因子来准确估计先验信噪比。通过与传统谱减法算法的比较,对改进后的先验信噪比进行了评价。将本文提出的时频变平均因子应用到传统的减法规则中,对各种类型噪声的语音质量度量得到了改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved A Priori MMSE Spectral Subtraction Method for Speech Enhancement
This paper presents a modification of conventional minimum mean squared error (MMSE) spectral subtraction algorithm by introducing an adaptive averaging factor to accurately estimate the a priori SNR. Performance of the modified a priori SNR is evaluated by comparing with conventional spectral subtraction algorithm. Improved results are obtained in terms of speech quality measures for various types of noise when the time-frequency varying averaging factor, proposed in this paper, is adapted in the conventional subtraction rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信