多智能体学习中的运动目标函数问题

J. Vidal, E. Durfee
{"title":"多智能体学习中的运动目标函数问题","authors":"J. Vidal, E. Durfee","doi":"10.1109/ICMAS.1998.699075","DOIUrl":null,"url":null,"abstract":"We describe a framework that can be used to model and predict the behavior of MASs with learning agents. It uses a difference equation for calculating the progression of an agent's error in its decision function, thereby telling us how the agent is expected to fare in the MAS. The equation relies on parameters which capture the agents' learning abilities (such as its change rate, learning rate and retention rate) as well as relevant aspects of the MAS (such as the impact that agents have on each other). We validate the framework with experimental results using reinforcement learning agents in a market system, as well as by other experimental results gathered from the AI literature.","PeriodicalId":244857,"journal":{"name":"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"The moving target function problem in multi-agent learning\",\"authors\":\"J. Vidal, E. Durfee\",\"doi\":\"10.1109/ICMAS.1998.699075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a framework that can be used to model and predict the behavior of MASs with learning agents. It uses a difference equation for calculating the progression of an agent's error in its decision function, thereby telling us how the agent is expected to fare in the MAS. The equation relies on parameters which capture the agents' learning abilities (such as its change rate, learning rate and retention rate) as well as relevant aspects of the MAS (such as the impact that agents have on each other). We validate the framework with experimental results using reinforcement learning agents in a market system, as well as by other experimental results gathered from the AI literature.\",\"PeriodicalId\":244857,\"journal\":{\"name\":\"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMAS.1998.699075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAS.1998.699075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们描述了一个框架,可以用来建模和预测具有学习代理的MASs的行为。它使用差分方程来计算智能体在决策函数中的误差级数,从而告诉我们智能体在MAS中的预期表现。该方程依赖于捕获代理学习能力的参数(例如其变化率,学习率和保留率)以及MAS的相关方面(例如代理相互之间的影响)。我们通过在市场系统中使用强化学习代理的实验结果以及从人工智能文献中收集的其他实验结果验证了该框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The moving target function problem in multi-agent learning
We describe a framework that can be used to model and predict the behavior of MASs with learning agents. It uses a difference equation for calculating the progression of an agent's error in its decision function, thereby telling us how the agent is expected to fare in the MAS. The equation relies on parameters which capture the agents' learning abilities (such as its change rate, learning rate and retention rate) as well as relevant aspects of the MAS (such as the impact that agents have on each other). We validate the framework with experimental results using reinforcement learning agents in a market system, as well as by other experimental results gathered from the AI literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信