变回波间距单次回波平面成像噪声优化研究

Zhenliang Lin, Qikang Li, Rui Wang, Guobin Li, Jie Luo
{"title":"变回波间距单次回波平面成像噪声优化研究","authors":"Zhenliang Lin, Qikang Li, Rui Wang, Guobin Li, Jie Luo","doi":"10.1145/3444884.3444895","DOIUrl":null,"url":null,"abstract":"Single-shot echoplanar imaging (EPI) sequence is a commonly-used readout scheme for functional magnetic resonance imaging (fMRI). It acquires signal in a short period of time with loud acoustic noise, which could cause discomfort for patients and even pose risk for sensitive populations, as well as confound auditory fMRI studies. Though a variety of attempts have been made toward quiet EPI scans, none has considered both the noise level and the timbre. In this study, we investigated the effect of varying echo spacing and modified gradient waveform on sound pressure level and noise spectral entropy. We then used genetic algorithm to optimize both sound pressure level and spectral entropy for single-shot EPI sequence by varying the duration of each readout unit with a sinusoidal waveform, changing the timbre significantly with increased entropy and reduced loudness. The resulting image quality were also compared with images obtained by standard EPI sequence.","PeriodicalId":142206,"journal":{"name":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Acoustic Noise for Single-Shot Echo-Planar Imaging by Varying Echo Spacing\",\"authors\":\"Zhenliang Lin, Qikang Li, Rui Wang, Guobin Li, Jie Luo\",\"doi\":\"10.1145/3444884.3444895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-shot echoplanar imaging (EPI) sequence is a commonly-used readout scheme for functional magnetic resonance imaging (fMRI). It acquires signal in a short period of time with loud acoustic noise, which could cause discomfort for patients and even pose risk for sensitive populations, as well as confound auditory fMRI studies. Though a variety of attempts have been made toward quiet EPI scans, none has considered both the noise level and the timbre. In this study, we investigated the effect of varying echo spacing and modified gradient waveform on sound pressure level and noise spectral entropy. We then used genetic algorithm to optimize both sound pressure level and spectral entropy for single-shot EPI sequence by varying the duration of each readout unit with a sinusoidal waveform, changing the timbre significantly with increased entropy and reduced loudness. The resulting image quality were also compared with images obtained by standard EPI sequence.\",\"PeriodicalId\":142206,\"journal\":{\"name\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444884.3444895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444884.3444895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单次回波平面成像(EPI)序列是功能磁共振成像(fMRI)中常用的读出方案。它在短时间内以巨大的噪音获取信号,这可能会给患者带来不适,甚至对敏感人群构成风险,并且会混淆听觉fMRI研究。虽然已经有各种各样的尝试来实现安静的EPI扫描,但没有一个同时考虑到噪音水平和音色。本文研究了不同回波间距和修正梯度波形对声压级和噪声谱熵的影响。然后,我们使用遗传算法来优化单次EPI序列的声压级和谱熵,方法是改变每个读出单元的正弦波形持续时间,随着熵的增加和响度的降低显著改变音色。并将所得图像质量与标准EPI序列所得图像进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Acoustic Noise for Single-Shot Echo-Planar Imaging by Varying Echo Spacing
Single-shot echoplanar imaging (EPI) sequence is a commonly-used readout scheme for functional magnetic resonance imaging (fMRI). It acquires signal in a short period of time with loud acoustic noise, which could cause discomfort for patients and even pose risk for sensitive populations, as well as confound auditory fMRI studies. Though a variety of attempts have been made toward quiet EPI scans, none has considered both the noise level and the timbre. In this study, we investigated the effect of varying echo spacing and modified gradient waveform on sound pressure level and noise spectral entropy. We then used genetic algorithm to optimize both sound pressure level and spectral entropy for single-shot EPI sequence by varying the duration of each readout unit with a sinusoidal waveform, changing the timbre significantly with increased entropy and reduced loudness. The resulting image quality were also compared with images obtained by standard EPI sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信