Yanjie Wang, E. Hysi, M. Moore, A. Leon, E. Abenojar, A. Exner, Michael C. Kolios
{"title":"靶向苏丹黑纳米气泡作为光声造影剂用于乳腺癌成像(会议报告)","authors":"Yanjie Wang, E. Hysi, M. Moore, A. Leon, E. Abenojar, A. Exner, Michael C. Kolios","doi":"10.1117/12.2510876","DOIUrl":null,"url":null,"abstract":"Nanobubbles are a new class of ultrasound contrast agents. Unlike conventional microbubbles, their sub-micron (~200nm) diameter allows them to extravasate outside the vasculature and accumulate in the tumor interstitium. In this study, nanobubbles with shells loaded with Sudan Black (BNB) and DiD fluorescent dye were synthesized. These nanobubbles can be used to simultaneously enhance ultrasound and photoacoustic signals for in vivo breast tumor imaging. \n\nThe nanobubbles consisted of lipid shells with a C3F8 gas core and were formed via self-assembly driven by mechanical agitation and size isolation via centrifugation. Herceptin antibody was conjugated to the BNB for targeting HER2-positive cells via standard EDC/NHS coupling chemistry. Human breast cancer cell lines (BT474 as HER2-positive and MDA-MB-231 as HER2-negative) were inoculated in the flanks of BALB/c-B17-Scid mice. Ultrasound and photoacoustic imaging (VevoLAZR, 21MHz, 720nm) were performed pre-injection and post-injection of the Herceptin conjugated BNB. The impact of Herceptin targeting was assessed by computing the PA frequency spectra and the non-linear contrast US images of the tumor regions. \n\nPhotoacoustic images of the HER2-positive tumor showed an average of 6 dB increase in contrast signal 2 mins post-injection, while the HER2-negative MDA tumors showed a negligible change in image contrast, suggesting increased uptake of Herceptin labelled BNBs. The enhanced contrast is also confirmed by the non-linear contrast signals between positive and negative tumors. The photoacoustic technique can potentially be used to examine the kinetics of BNB extravasation. This work shows the potential of BNBs as multi-modal contrast agents capable of specialized tumor imaging in vivo.","PeriodicalId":206495,"journal":{"name":"Photons Plus Ultrasound: Imaging and Sensing 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Targeted Sudan Black nanobubbles as photoacoustic contrast agents for breast cancer imaging (Conference Presentation)\",\"authors\":\"Yanjie Wang, E. Hysi, M. Moore, A. Leon, E. Abenojar, A. Exner, Michael C. Kolios\",\"doi\":\"10.1117/12.2510876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanobubbles are a new class of ultrasound contrast agents. Unlike conventional microbubbles, their sub-micron (~200nm) diameter allows them to extravasate outside the vasculature and accumulate in the tumor interstitium. In this study, nanobubbles with shells loaded with Sudan Black (BNB) and DiD fluorescent dye were synthesized. These nanobubbles can be used to simultaneously enhance ultrasound and photoacoustic signals for in vivo breast tumor imaging. \\n\\nThe nanobubbles consisted of lipid shells with a C3F8 gas core and were formed via self-assembly driven by mechanical agitation and size isolation via centrifugation. Herceptin antibody was conjugated to the BNB for targeting HER2-positive cells via standard EDC/NHS coupling chemistry. Human breast cancer cell lines (BT474 as HER2-positive and MDA-MB-231 as HER2-negative) were inoculated in the flanks of BALB/c-B17-Scid mice. Ultrasound and photoacoustic imaging (VevoLAZR, 21MHz, 720nm) were performed pre-injection and post-injection of the Herceptin conjugated BNB. The impact of Herceptin targeting was assessed by computing the PA frequency spectra and the non-linear contrast US images of the tumor regions. \\n\\nPhotoacoustic images of the HER2-positive tumor showed an average of 6 dB increase in contrast signal 2 mins post-injection, while the HER2-negative MDA tumors showed a negligible change in image contrast, suggesting increased uptake of Herceptin labelled BNBs. The enhanced contrast is also confirmed by the non-linear contrast signals between positive and negative tumors. The photoacoustic technique can potentially be used to examine the kinetics of BNB extravasation. This work shows the potential of BNBs as multi-modal contrast agents capable of specialized tumor imaging in vivo.\",\"PeriodicalId\":206495,\"journal\":{\"name\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2510876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photons Plus Ultrasound: Imaging and Sensing 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2510876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Targeted Sudan Black nanobubbles as photoacoustic contrast agents for breast cancer imaging (Conference Presentation)
Nanobubbles are a new class of ultrasound contrast agents. Unlike conventional microbubbles, their sub-micron (~200nm) diameter allows them to extravasate outside the vasculature and accumulate in the tumor interstitium. In this study, nanobubbles with shells loaded with Sudan Black (BNB) and DiD fluorescent dye were synthesized. These nanobubbles can be used to simultaneously enhance ultrasound and photoacoustic signals for in vivo breast tumor imaging.
The nanobubbles consisted of lipid shells with a C3F8 gas core and were formed via self-assembly driven by mechanical agitation and size isolation via centrifugation. Herceptin antibody was conjugated to the BNB for targeting HER2-positive cells via standard EDC/NHS coupling chemistry. Human breast cancer cell lines (BT474 as HER2-positive and MDA-MB-231 as HER2-negative) were inoculated in the flanks of BALB/c-B17-Scid mice. Ultrasound and photoacoustic imaging (VevoLAZR, 21MHz, 720nm) were performed pre-injection and post-injection of the Herceptin conjugated BNB. The impact of Herceptin targeting was assessed by computing the PA frequency spectra and the non-linear contrast US images of the tumor regions.
Photoacoustic images of the HER2-positive tumor showed an average of 6 dB increase in contrast signal 2 mins post-injection, while the HER2-negative MDA tumors showed a negligible change in image contrast, suggesting increased uptake of Herceptin labelled BNBs. The enhanced contrast is also confirmed by the non-linear contrast signals between positive and negative tumors. The photoacoustic technique can potentially be used to examine the kinetics of BNB extravasation. This work shows the potential of BNBs as multi-modal contrast agents capable of specialized tumor imaging in vivo.