使用纹理分析和拓扑约束的肌肉骨骼系统的分层MRI分割

A. Hassani, B. Gilles, W. Puech, M. Hassouni, M. Rziza
{"title":"使用纹理分析和拓扑约束的肌肉骨骼系统的分层MRI分割","authors":"A. Hassani, B. Gilles, W. Puech, M. Hassouni, M. Rziza","doi":"10.1109/EUVIP.2014.7018396","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel approach for segmenting MRI images into the three classes of tissue of the musculoskeletal system : bone, fat and muscle. This approach is guided by a prior anatomical knowledge modeled using a tree structure. This tree aims at representing the natural nested topology of the musculoskeletal anatomy, and is used to hierarchically segment images. At each level of the hierarchy, a standard two-classes classification process is performed using texture-based descriptors and support vector machines (SVM). The classification is refined using topological constraints (connexity and neighborhood) derived from anatomy. We evaluate the performance of our approach by comparing the constrained approach with the original hierarchical algorithm. We achieve an excellent classification(78%) and shows that the use of texture analysis combined with simple topological constraints can improve the segmentation.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical MRI segmentation of the musculoskeletal system using texture analysis and topologigcal constraints\",\"authors\":\"A. Hassani, B. Gilles, W. Puech, M. Hassouni, M. Rziza\",\"doi\":\"10.1109/EUVIP.2014.7018396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel approach for segmenting MRI images into the three classes of tissue of the musculoskeletal system : bone, fat and muscle. This approach is guided by a prior anatomical knowledge modeled using a tree structure. This tree aims at representing the natural nested topology of the musculoskeletal anatomy, and is used to hierarchically segment images. At each level of the hierarchy, a standard two-classes classification process is performed using texture-based descriptors and support vector machines (SVM). The classification is refined using topological constraints (connexity and neighborhood) derived from anatomy. We evaluate the performance of our approach by comparing the constrained approach with the original hierarchical algorithm. We achieve an excellent classification(78%) and shows that the use of texture analysis combined with simple topological constraints can improve the segmentation.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了一种新的方法将MRI图像分割成肌肉骨骼系统的三类组织:骨骼,脂肪和肌肉。这种方法是由使用树形结构建模的先验解剖学知识指导的。该树旨在表示肌肉骨骼解剖结构的自然嵌套拓扑结构,并用于分层分割图像。在层次结构的每个级别上,使用基于纹理的描述符和支持向量机(SVM)执行标准的两类分类过程。该分类使用从解剖学衍生的拓扑约束(连接和邻域)进行细化。我们通过比较约束方法和原始分层算法来评估我们的方法的性能。我们实现了很好的分类(78%),并表明使用纹理分析结合简单的拓扑约束可以改善分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical MRI segmentation of the musculoskeletal system using texture analysis and topologigcal constraints
In this paper, we introduce a novel approach for segmenting MRI images into the three classes of tissue of the musculoskeletal system : bone, fat and muscle. This approach is guided by a prior anatomical knowledge modeled using a tree structure. This tree aims at representing the natural nested topology of the musculoskeletal anatomy, and is used to hierarchically segment images. At each level of the hierarchy, a standard two-classes classification process is performed using texture-based descriptors and support vector machines (SVM). The classification is refined using topological constraints (connexity and neighborhood) derived from anatomy. We evaluate the performance of our approach by comparing the constrained approach with the original hierarchical algorithm. We achieve an excellent classification(78%) and shows that the use of texture analysis combined with simple topological constraints can improve the segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信