主题演讲#2:多模态数据分析及其在成像基因组学中的应用

M. Do
{"title":"主题演讲#2:多模态数据分析及其在成像基因组学中的应用","authors":"M. Do","doi":"10.1109/NICS51282.2020.9335898","DOIUrl":null,"url":null,"abstract":"Multi-modality matched datasets in healthcare capture information about the disease of the same patient from multiple views, often at different physical scales, thereby providing a more complete picture of complex diseases like cancer. We present a novel extension of the canonical correlation analysis (CCA) framework that takes into account underlying dependencies within individual modalities to better capture correlations between two modalities. We demonstrate the utility of the resulting embedding space as a fusion module in survival prediction for breast cancer patients using histology imaging and genomics data.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote Talk #2: Multimodal Data Analysis with Applications in Imaging Genomics\",\"authors\":\"M. Do\",\"doi\":\"10.1109/NICS51282.2020.9335898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-modality matched datasets in healthcare capture information about the disease of the same patient from multiple views, often at different physical scales, thereby providing a more complete picture of complex diseases like cancer. We present a novel extension of the canonical correlation analysis (CCA) framework that takes into account underlying dependencies within individual modalities to better capture correlations between two modalities. We demonstrate the utility of the resulting embedding space as a fusion module in survival prediction for breast cancer patients using histology imaging and genomics data.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗保健中的多模态匹配数据集从多个角度(通常是在不同的物理尺度上)获取有关同一患者疾病的信息,从而为癌症等复杂疾病提供更完整的图像。我们提出了典型相关分析(CCA)框架的新扩展,该框架考虑了单个模式内的潜在依赖关系,以更好地捕获两个模式之间的相关性。我们展示了由此产生的嵌入空间作为融合模块在使用组织学成像和基因组学数据进行乳腺癌患者生存预测中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keynote Talk #2: Multimodal Data Analysis with Applications in Imaging Genomics
Multi-modality matched datasets in healthcare capture information about the disease of the same patient from multiple views, often at different physical scales, thereby providing a more complete picture of complex diseases like cancer. We present a novel extension of the canonical correlation analysis (CCA) framework that takes into account underlying dependencies within individual modalities to better capture correlations between two modalities. We demonstrate the utility of the resulting embedding space as a fusion module in survival prediction for breast cancer patients using histology imaging and genomics data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信