容错可逆有限域算术电路

J. Mathew, Jawar Singh, Anas Abu Taleb, D. Pradhan
{"title":"容错可逆有限域算术电路","authors":"J. Mathew, Jawar Singh, Anas Abu Taleb, D. Pradhan","doi":"10.1109/IOLTS.2008.35","DOIUrl":null,"url":null,"abstract":"In this paper, we present a systematic method for the designing fault tolerant reversible arithmetic circuits for finite field or Galois fields of the form GF(2m). To tackle the problem of errors in computation, we propose error detection and correction using multiple parity prediction technique based on low density parity check (LDPC) code. For error detection and correction, we need additional garbage outputs. Our technique, when compared with traditional fault tolerant approach gives better implementation cost.","PeriodicalId":261786,"journal":{"name":"2008 14th IEEE International On-Line Testing Symposium","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fault Tolerant Reversible Finite Field Arithmetic Circuits\",\"authors\":\"J. Mathew, Jawar Singh, Anas Abu Taleb, D. Pradhan\",\"doi\":\"10.1109/IOLTS.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a systematic method for the designing fault tolerant reversible arithmetic circuits for finite field or Galois fields of the form GF(2m). To tackle the problem of errors in computation, we propose error detection and correction using multiple parity prediction technique based on low density parity check (LDPC) code. For error detection and correction, we need additional garbage outputs. Our technique, when compared with traditional fault tolerant approach gives better implementation cost.\",\"PeriodicalId\":261786,\"journal\":{\"name\":\"2008 14th IEEE International On-Line Testing Symposium\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 14th IEEE International On-Line Testing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th IEEE International On-Line Testing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了GF(2m)型有限域或伽罗瓦域容错可逆算法电路的系统设计方法。为了解决计算中的错误问题,我们提出了基于低密度奇偶校验(LDPC)码的多重奇偶预测技术进行错误检测和纠正。对于错误检测和纠正,我们需要额外的垃圾输出。与传统的容错方法相比,我们的技术具有更好的实现成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Tolerant Reversible Finite Field Arithmetic Circuits
In this paper, we present a systematic method for the designing fault tolerant reversible arithmetic circuits for finite field or Galois fields of the form GF(2m). To tackle the problem of errors in computation, we propose error detection and correction using multiple parity prediction technique based on low density parity check (LDPC) code. For error detection and correction, we need additional garbage outputs. Our technique, when compared with traditional fault tolerant approach gives better implementation cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信