{"title":"微型卫星星座的星上部分运行时重构","authors":"T. Vladimirova, Xiaofeng Wu","doi":"10.1109/AHS.2006.54","DOIUrl":null,"url":null,"abstract":"Distributed satellite systems are considered a promising new direction in spacecraft architecture design. Pico-satellite constellations flying in low Earth orbit (LEO) could become an efficient and low-cost solution to Earth observation and remote sensing in the future. There is a pressing need for condition-based maintenance, self-repair and upgrade capabilities on-board satellites in order to enable future space applications. In this paper we present a methodology for onboard partial run-time reconfiguration to enable onboard system-level functional changes ensuring correct operation, longer life and higher quality of service. The technique of partial run-time reconfiguration is introduced and a remote reconfiguration methodology is described. The architecture of an FPGA-based reconfigurable SoC design for on-board computing is outlined. A case study, which demonstrates the feasibility of the approach, is presented","PeriodicalId":232693,"journal":{"name":"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On-Board Partial Run-Time Reconfiguration for Pico-Satellite Constellations\",\"authors\":\"T. Vladimirova, Xiaofeng Wu\",\"doi\":\"10.1109/AHS.2006.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed satellite systems are considered a promising new direction in spacecraft architecture design. Pico-satellite constellations flying in low Earth orbit (LEO) could become an efficient and low-cost solution to Earth observation and remote sensing in the future. There is a pressing need for condition-based maintenance, self-repair and upgrade capabilities on-board satellites in order to enable future space applications. In this paper we present a methodology for onboard partial run-time reconfiguration to enable onboard system-level functional changes ensuring correct operation, longer life and higher quality of service. The technique of partial run-time reconfiguration is introduced and a remote reconfiguration methodology is described. The architecture of an FPGA-based reconfigurable SoC design for on-board computing is outlined. A case study, which demonstrates the feasibility of the approach, is presented\",\"PeriodicalId\":232693,\"journal\":{\"name\":\"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2006.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2006.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Board Partial Run-Time Reconfiguration for Pico-Satellite Constellations
Distributed satellite systems are considered a promising new direction in spacecraft architecture design. Pico-satellite constellations flying in low Earth orbit (LEO) could become an efficient and low-cost solution to Earth observation and remote sensing in the future. There is a pressing need for condition-based maintenance, self-repair and upgrade capabilities on-board satellites in order to enable future space applications. In this paper we present a methodology for onboard partial run-time reconfiguration to enable onboard system-level functional changes ensuring correct operation, longer life and higher quality of service. The technique of partial run-time reconfiguration is introduced and a remote reconfiguration methodology is described. The architecture of an FPGA-based reconfigurable SoC design for on-board computing is outlined. A case study, which demonstrates the feasibility of the approach, is presented