Y. André, A. Trassoudaine, G. Avit, K. Lekhal, M. Ramdani, C. Leroux, G. Monier, C. Varenne, P. Hoggan, D. Castelluci, C. Bougerol, F. Réveret, J. Leymarie, E. Petit, V. Dubrovskii, E. Gil
{"title":"氢化物VPE: GaAs和GaN纳米线快速生长的意外过程,具有创纪录的宽高比和无多晶性的晶体结构","authors":"Y. André, A. Trassoudaine, G. Avit, K. Lekhal, M. Ramdani, C. Leroux, G. Monier, C. Varenne, P. Hoggan, D. Castelluci, C. Bougerol, F. Réveret, J. Leymarie, E. Petit, V. Dubrovskii, E. Gil","doi":"10.1117/12.2035485","DOIUrl":null,"url":null,"abstract":"Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.","PeriodicalId":334178,"journal":{"name":"Smart Materials, Nano-, and Micro- Smart Systems","volume":"8923 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure\",\"authors\":\"Y. André, A. Trassoudaine, G. Avit, K. Lekhal, M. Ramdani, C. Leroux, G. Monier, C. Varenne, P. Hoggan, D. Castelluci, C. Bougerol, F. Réveret, J. Leymarie, E. Petit, V. Dubrovskii, E. Gil\",\"doi\":\"10.1117/12.2035485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.\",\"PeriodicalId\":334178,\"journal\":{\"name\":\"Smart Materials, Nano-, and Micro- Smart Systems\",\"volume\":\"8923 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials, Nano-, and Micro- Smart Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2035485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials, Nano-, and Micro- Smart Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2035485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure
Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.