基于MRI的伪ct生成,在全身PET/MRI中使用分类图谱图像

Hossein ARABI, H. Zaidi
{"title":"基于MRI的伪ct生成,在全身PET/MRI中使用分类图谱图像","authors":"Hossein ARABI, H. Zaidi","doi":"10.1109/NSSMIC.2014.7430833","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel approach for MRI-based generation of pseudo-CT images in whole-body PET/MRI based on Hofmann's pattern recognition and atlas registration approach. The major improvement emanates from sorting registered atlas images based on voxelwise local normalized cross-correlation and choosing the most similar atlas image for Gaussian process regression (GPR) analysis. Furthermore, prior knowledge derived from the correlation between lung volume and attenuation coefficients was embedded in the GPR kernel for accurate patient-specific prediction of lung attenuation coefficients. Modifying the GPR algorithm improved the similarity index of bone extraction from 0.55 to 0.61 and enabled significant bias reduction of tracer uptake (SUV) in bony regions. Incorporating prior knowledge about lung volume in the GPR algorithm resulted in SUVmean bias reduction from 8.9% to 4.1% in the whole lung region. Overall, the proposed algorithm provided more accurate PET quantification in the lungs and bony regions.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MRI-based pseudo-CT generation using sorted atlas images in whole-body PET/MRI\",\"authors\":\"Hossein ARABI, H. Zaidi\",\"doi\":\"10.1109/NSSMIC.2014.7430833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel approach for MRI-based generation of pseudo-CT images in whole-body PET/MRI based on Hofmann's pattern recognition and atlas registration approach. The major improvement emanates from sorting registered atlas images based on voxelwise local normalized cross-correlation and choosing the most similar atlas image for Gaussian process regression (GPR) analysis. Furthermore, prior knowledge derived from the correlation between lung volume and attenuation coefficients was embedded in the GPR kernel for accurate patient-specific prediction of lung attenuation coefficients. Modifying the GPR algorithm improved the similarity index of bone extraction from 0.55 to 0.61 and enabled significant bias reduction of tracer uptake (SUV) in bony regions. Incorporating prior knowledge about lung volume in the GPR algorithm resulted in SUVmean bias reduction from 8.9% to 4.1% in the whole lung region. Overall, the proposed algorithm provided more accurate PET quantification in the lungs and bony regions.\",\"PeriodicalId\":144711,\"journal\":{\"name\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2014.7430833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7430833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们提出了一种基于Hofmann模式识别和图谱配准方法的基于MRI的全身PET/MRI伪ct图像生成的新方法。主要改进在于基于体向局部归一化互相关对配准地图集图像进行分类,并选择最相似的地图集图像进行高斯过程回归分析。此外,从肺体积和衰减系数之间的相关性中获得的先验知识被嵌入到GPR核中,以准确预测患者特异性肺衰减系数。修改GPR算法将骨提取的相似指数从0.55提高到0.61,并使骨区域的示踪剂摄取(SUV)的偏差显著降低。在GPR算法中加入关于肺体积的先验知识,使得整个肺区域的SUVmean偏差从8.9%降低到4.1%。总的来说,该算法在肺和骨区域提供了更准确的PET量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI-based pseudo-CT generation using sorted atlas images in whole-body PET/MRI
In this work, we propose a novel approach for MRI-based generation of pseudo-CT images in whole-body PET/MRI based on Hofmann's pattern recognition and atlas registration approach. The major improvement emanates from sorting registered atlas images based on voxelwise local normalized cross-correlation and choosing the most similar atlas image for Gaussian process regression (GPR) analysis. Furthermore, prior knowledge derived from the correlation between lung volume and attenuation coefficients was embedded in the GPR kernel for accurate patient-specific prediction of lung attenuation coefficients. Modifying the GPR algorithm improved the similarity index of bone extraction from 0.55 to 0.61 and enabled significant bias reduction of tracer uptake (SUV) in bony regions. Incorporating prior knowledge about lung volume in the GPR algorithm resulted in SUVmean bias reduction from 8.9% to 4.1% in the whole lung region. Overall, the proposed algorithm provided more accurate PET quantification in the lungs and bony regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信