{"title":"纳米封装与传统和创新材料互连的电学和热行为","authors":"A. Chiariello, A. Maffucci, G. Miano","doi":"10.1109/SPI.2010.5483568","DOIUrl":null,"url":null,"abstract":"The paper deals with the modeling of the parasitic resistance of nanopackaging interconnects. Two kinds of material are considered: conventional (copper) and innovative (carbon nanotubes). Both of them are modeled taking into account the effects of temperature and size, both playing a relevant role in nanopackaging. Simple but physically-meaningful models for carbon nanotubes are proposed, based on the concept of the number of conducting channel and on the evaluation of the mean free path. The comparison between the materials is made with reference to a 30 μm-pitch pillar bump, proposed as chip-to-package interconnect.","PeriodicalId":293987,"journal":{"name":"2010 IEEE 14th Workshop on Signal Propagation on Interconnects","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrical and thermal behaviour of nanopackaging interconnects with conventional and innovative materials\",\"authors\":\"A. Chiariello, A. Maffucci, G. Miano\",\"doi\":\"10.1109/SPI.2010.5483568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the modeling of the parasitic resistance of nanopackaging interconnects. Two kinds of material are considered: conventional (copper) and innovative (carbon nanotubes). Both of them are modeled taking into account the effects of temperature and size, both playing a relevant role in nanopackaging. Simple but physically-meaningful models for carbon nanotubes are proposed, based on the concept of the number of conducting channel and on the evaluation of the mean free path. The comparison between the materials is made with reference to a 30 μm-pitch pillar bump, proposed as chip-to-package interconnect.\",\"PeriodicalId\":293987,\"journal\":{\"name\":\"2010 IEEE 14th Workshop on Signal Propagation on Interconnects\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 14th Workshop on Signal Propagation on Interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI.2010.5483568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th Workshop on Signal Propagation on Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI.2010.5483568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical and thermal behaviour of nanopackaging interconnects with conventional and innovative materials
The paper deals with the modeling of the parasitic resistance of nanopackaging interconnects. Two kinds of material are considered: conventional (copper) and innovative (carbon nanotubes). Both of them are modeled taking into account the effects of temperature and size, both playing a relevant role in nanopackaging. Simple but physically-meaningful models for carbon nanotubes are proposed, based on the concept of the number of conducting channel and on the evaluation of the mean free path. The comparison between the materials is made with reference to a 30 μm-pitch pillar bump, proposed as chip-to-package interconnect.