{"title":"最佳双栅极mosfet:对称还是不对称栅极?","authors":"Keunwoo Kim, J. Fossum","doi":"10.1109/SOI.1999.819871","DOIUrl":null,"url":null,"abstract":"Due to their near-ideal intrinsic features, double-gate (DG) MOSFETs (with thin, fully depleted (FD) Si-film (SOI) bodies) are of interest for possible future CMOS IC applications with L/sub eff/ approaching the lateral scaling limit (/spl sim/20 nm) (Fossum and Chong, 1998; Wong et al. 1998). Much of this interest stems from the two-channel property of the symmetrical-gate DG device and the implied higher current drive. More important, we believe, is the electrical coupling of the two gates through the FD Si film. This coupling underlies the inherent suppression of SCEs and the excellent subthreshold slope, which translate to high I/sub on//I/sub off/ ratios. In fact, as we show in this paper, the coupling can be exploited more in asymmetrical-gate DG MOSFETs (Fossum and Chong, 1998; Tanaka et al. 1994) than in symmetrical ones. We rely on numerical device simulations, using MEDICI and its hydrodynamic-transport option, and SOISPICE circuit simulations, using the UFSOI/FD MOSFET model (Fossum et al. 1998), to convey insight regarding performance and optimal design of DG MOSFETs and to reveal the inherent superiority of asymmetrical gates.","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal double-gate MOSFETs: symmetrical or asymmetrical gates?\",\"authors\":\"Keunwoo Kim, J. Fossum\",\"doi\":\"10.1109/SOI.1999.819871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their near-ideal intrinsic features, double-gate (DG) MOSFETs (with thin, fully depleted (FD) Si-film (SOI) bodies) are of interest for possible future CMOS IC applications with L/sub eff/ approaching the lateral scaling limit (/spl sim/20 nm) (Fossum and Chong, 1998; Wong et al. 1998). Much of this interest stems from the two-channel property of the symmetrical-gate DG device and the implied higher current drive. More important, we believe, is the electrical coupling of the two gates through the FD Si film. This coupling underlies the inherent suppression of SCEs and the excellent subthreshold slope, which translate to high I/sub on//I/sub off/ ratios. In fact, as we show in this paper, the coupling can be exploited more in asymmetrical-gate DG MOSFETs (Fossum and Chong, 1998; Tanaka et al. 1994) than in symmetrical ones. We rely on numerical device simulations, using MEDICI and its hydrodynamic-transport option, and SOISPICE circuit simulations, using the UFSOI/FD MOSFET model (Fossum et al. 1998), to convey insight regarding performance and optimal design of DG MOSFETs and to reveal the inherent superiority of asymmetrical gates.\",\"PeriodicalId\":117832,\"journal\":{\"name\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.1999.819871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
由于其接近理想的固有特性,双栅(DG) mosfet(具有薄的,完全耗尽(FD)硅膜(SOI)体)对于L/sub /接近横向缩放极限(/spl sim/20 nm)的未来CMOS IC应用很有兴趣(Fossum和Chong, 1998;Wong et al. 1998)。这种兴趣很大程度上源于对称栅DG器件的双通道特性和隐含的高电流驱动。我们认为,更重要的是两个栅极通过FD Si薄膜的电耦合。这种耦合是ses固有抑制和出色的亚阈值斜率的基础,这转化为高I/sub on//I/sub off/比率。事实上,正如我们在本文中所展示的,这种耦合可以在非对称栅DG mosfet中得到更多的利用(Fossum和Chong, 1998;Tanaka et al. 1994)。我们依靠数值器件模拟,使用MEDICI及其流体动力输运选项,以及SOISPICE电路模拟,使用UFSOI/FD MOSFET模型(Fossum et al. 1998),来传达关于DG MOSFET的性能和优化设计的见解,并揭示不对称栅极的固有优势。
Optimal double-gate MOSFETs: symmetrical or asymmetrical gates?
Due to their near-ideal intrinsic features, double-gate (DG) MOSFETs (with thin, fully depleted (FD) Si-film (SOI) bodies) are of interest for possible future CMOS IC applications with L/sub eff/ approaching the lateral scaling limit (/spl sim/20 nm) (Fossum and Chong, 1998; Wong et al. 1998). Much of this interest stems from the two-channel property of the symmetrical-gate DG device and the implied higher current drive. More important, we believe, is the electrical coupling of the two gates through the FD Si film. This coupling underlies the inherent suppression of SCEs and the excellent subthreshold slope, which translate to high I/sub on//I/sub off/ ratios. In fact, as we show in this paper, the coupling can be exploited more in asymmetrical-gate DG MOSFETs (Fossum and Chong, 1998; Tanaka et al. 1994) than in symmetrical ones. We rely on numerical device simulations, using MEDICI and its hydrodynamic-transport option, and SOISPICE circuit simulations, using the UFSOI/FD MOSFET model (Fossum et al. 1998), to convey insight regarding performance and optimal design of DG MOSFETs and to reveal the inherent superiority of asymmetrical gates.