{"title":"基于遗传算法的多路模型预测控制权选择","authors":"E. Joelianto, Fikri M. Hernawan","doi":"10.1109/ICICI-BME.2009.5417217","DOIUrl":null,"url":null,"abstract":"This paper presents the application of Genetic Algorithm (GA) to find the optimal weighting of multiplexed model predictive control (MMPC). Using GA, the selection procedure can be done to ensure the best possible combination of the weighting parameters of MMPC. A bake plate system model controlled using MMPC is used to demonstrate the effect of the selected parameters using GA.","PeriodicalId":191194,"journal":{"name":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplexed model predictive control weighting selection using Genetic Algorithm\",\"authors\":\"E. Joelianto, Fikri M. Hernawan\",\"doi\":\"10.1109/ICICI-BME.2009.5417217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of Genetic Algorithm (GA) to find the optimal weighting of multiplexed model predictive control (MMPC). Using GA, the selection procedure can be done to ensure the best possible combination of the weighting parameters of MMPC. A bake plate system model controlled using MMPC is used to demonstrate the effect of the selected parameters using GA.\",\"PeriodicalId\":191194,\"journal\":{\"name\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2009.5417217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2009.5417217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplexed model predictive control weighting selection using Genetic Algorithm
This paper presents the application of Genetic Algorithm (GA) to find the optimal weighting of multiplexed model predictive control (MMPC). Using GA, the selection procedure can be done to ensure the best possible combination of the weighting parameters of MMPC. A bake plate system model controlled using MMPC is used to demonstrate the effect of the selected parameters using GA.