一种新的数字输出驱动宏建模方法及其在同步开关噪声分析中的应用

B. Buhrow, E. Daniel, B. Gilbert
{"title":"一种新的数字输出驱动宏建模方法及其在同步开关噪声分析中的应用","authors":"B. Buhrow, E. Daniel, B. Gilbert","doi":"10.1109/EPEP.2007.4387175","DOIUrl":null,"url":null,"abstract":"Output driver models play a critical role in simultaneous switching noise (SSN) analysis. However, their accuracy must often be compromised with simplicity of implementation for large scale SSN simulations. We present an approach for creating simple, fast, and accurate macromodels of output drivers. To demonstrate their usefulness, simulation results in multi-IO SSN simulations are shown and compared to those obtained from transistor level SPICE libraries.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"106 4 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Macromodeling Approach for Digital Output Drivers and Application in Simultaneous Switching Noise Analysis\",\"authors\":\"B. Buhrow, E. Daniel, B. Gilbert\",\"doi\":\"10.1109/EPEP.2007.4387175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Output driver models play a critical role in simultaneous switching noise (SSN) analysis. However, their accuracy must often be compromised with simplicity of implementation for large scale SSN simulations. We present an approach for creating simple, fast, and accurate macromodels of output drivers. To demonstrate their usefulness, simulation results in multi-IO SSN simulations are shown and compared to those obtained from transistor level SPICE libraries.\",\"PeriodicalId\":402571,\"journal\":{\"name\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"volume\":\"106 4 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2007.4387175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

输出驱动器模型在同步开关噪声分析中起着至关重要的作用。然而,它们的准确性必须经常与大规模SSN模拟实现的简单性相妥协。我们提出了一种创建简单、快速、准确的输出驱动宏模型的方法。为了证明它们的实用性,给出了多io SSN仿真的仿真结果,并与从晶体管级SPICE库中获得的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Macromodeling Approach for Digital Output Drivers and Application in Simultaneous Switching Noise Analysis
Output driver models play a critical role in simultaneous switching noise (SSN) analysis. However, their accuracy must often be compromised with simplicity of implementation for large scale SSN simulations. We present an approach for creating simple, fast, and accurate macromodels of output drivers. To demonstrate their usefulness, simulation results in multi-IO SSN simulations are shown and compared to those obtained from transistor level SPICE libraries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信