用于盲图像去模糊的能量可伸缩加速器

Priyanka Raina, M. Tikekar, A. Chandrakasan
{"title":"用于盲图像去模糊的能量可伸缩加速器","authors":"Priyanka Raina, M. Tikekar, A. Chandrakasan","doi":"10.1109/ESSCIRC.2016.7598255","DOIUrl":null,"url":null,"abstract":"Camera shake is the leading cause of blur in cell-phone camera images. Removing blur requires deconvolving the blurred image with a kernel which is typically unknown and needs to be estimated from the blurred image. This kernel estimation is computationally intensive and takes several minutes on a CPU which makes it unsuitable for mobile devices. This work presents the first hardware accelerator for kernel estimation for image deblurring applications. Our approach, using a multi-resolution IRLS deconvolution engine with DFT based matrix multiplication, a high-throughput image correlator and a high-speed selective update based gradient projection solver, achieves a 78× reduction in kernel estimation runtime, and a 56× reduction in total deblurring time for a 1920×1080 image enabling quick feedback to the user. Configurability in kernel size and number of iterations gives up to 10× energy scalability, allowing the system to trade-off runtime with image quality. The test chip, fabricated in 40 nm CMOS, consumes 105 mJ for kernel estimation running at 83 MHz and 0.9 V, making it suitable for integration into mobile devices.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An energy-scalable accelerator for blind image deblurring\",\"authors\":\"Priyanka Raina, M. Tikekar, A. Chandrakasan\",\"doi\":\"10.1109/ESSCIRC.2016.7598255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camera shake is the leading cause of blur in cell-phone camera images. Removing blur requires deconvolving the blurred image with a kernel which is typically unknown and needs to be estimated from the blurred image. This kernel estimation is computationally intensive and takes several minutes on a CPU which makes it unsuitable for mobile devices. This work presents the first hardware accelerator for kernel estimation for image deblurring applications. Our approach, using a multi-resolution IRLS deconvolution engine with DFT based matrix multiplication, a high-throughput image correlator and a high-speed selective update based gradient projection solver, achieves a 78× reduction in kernel estimation runtime, and a 56× reduction in total deblurring time for a 1920×1080 image enabling quick feedback to the user. Configurability in kernel size and number of iterations gives up to 10× energy scalability, allowing the system to trade-off runtime with image quality. The test chip, fabricated in 40 nm CMOS, consumes 105 mJ for kernel estimation running at 83 MHz and 0.9 V, making it suitable for integration into mobile devices.\",\"PeriodicalId\":246471,\"journal\":{\"name\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2016.7598255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

相机抖动是导致手机相机图像模糊的主要原因。去除模糊需要用一个通常未知的核对模糊图像进行反卷积,并且需要从模糊图像中进行估计。这种内核估计是计算密集型的,在CPU上需要几分钟,这使得它不适合移动设备。这项工作提出了第一个用于图像去模糊应用的核估计硬件加速器。我们的方法使用基于DFT的矩阵乘法的多分辨率IRLS反卷积引擎,高通量图像相关器和基于高速选择性更新的梯度投影求解器,实现了内核估计运行时间减少78倍,1920×1080图像的总去模糊时间减少56倍,从而能够快速反馈给用户。内核大小和迭代次数的可配置性提供了高达10倍的能量可伸缩性,允许系统在运行时和图像质量之间进行权衡。该测试芯片采用40 nm CMOS工艺,在83 MHz和0.9 V下运行时,内核估计功耗为105 mJ,适合集成到移动设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy-scalable accelerator for blind image deblurring
Camera shake is the leading cause of blur in cell-phone camera images. Removing blur requires deconvolving the blurred image with a kernel which is typically unknown and needs to be estimated from the blurred image. This kernel estimation is computationally intensive and takes several minutes on a CPU which makes it unsuitable for mobile devices. This work presents the first hardware accelerator for kernel estimation for image deblurring applications. Our approach, using a multi-resolution IRLS deconvolution engine with DFT based matrix multiplication, a high-throughput image correlator and a high-speed selective update based gradient projection solver, achieves a 78× reduction in kernel estimation runtime, and a 56× reduction in total deblurring time for a 1920×1080 image enabling quick feedback to the user. Configurability in kernel size and number of iterations gives up to 10× energy scalability, allowing the system to trade-off runtime with image quality. The test chip, fabricated in 40 nm CMOS, consumes 105 mJ for kernel estimation running at 83 MHz and 0.9 V, making it suitable for integration into mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信