{"title":"三维环境下六自由度机械臂的快速运动规划","authors":"B. Glavina","doi":"10.1109/ICAR.1991.240396","DOIUrl":null,"url":null,"abstract":"An algorithm is described which is able to plan collision free motions fast for manipulators with six degrees of freedom (DOF) within 3D environments. After a short review of other implemented 3D motion planners, an outline of the CGR search (combination of goal-directed and randomized search) is given. CGR search pursues a heuristic strategy to effectively find a path in even high-dimensional configuration spaces (C-spaces). The search space, however, is not constructed explicitly, but only tested in certain points determined by the search. Every test whether a point lies in free C-space or not requires a geometric intersection computation. This collision test is very efficient due to a hierarchical object representation. The experimental results show the performance of the proposed motion planner in several realistic tasks, including a snake-like manipulator with six degrees of freedom and a PUMA robot reorienting a bulky load through a gate.<<ETX>>","PeriodicalId":356333,"journal":{"name":"Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A fast motion planner for 6-DOF manipulators in 3-D environments\",\"authors\":\"B. Glavina\",\"doi\":\"10.1109/ICAR.1991.240396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is described which is able to plan collision free motions fast for manipulators with six degrees of freedom (DOF) within 3D environments. After a short review of other implemented 3D motion planners, an outline of the CGR search (combination of goal-directed and randomized search) is given. CGR search pursues a heuristic strategy to effectively find a path in even high-dimensional configuration spaces (C-spaces). The search space, however, is not constructed explicitly, but only tested in certain points determined by the search. Every test whether a point lies in free C-space or not requires a geometric intersection computation. This collision test is very efficient due to a hierarchical object representation. The experimental results show the performance of the proposed motion planner in several realistic tasks, including a snake-like manipulator with six degrees of freedom and a PUMA robot reorienting a bulky load through a gate.<<ETX>>\",\"PeriodicalId\":356333,\"journal\":{\"name\":\"Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.1991.240396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.1991.240396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast motion planner for 6-DOF manipulators in 3-D environments
An algorithm is described which is able to plan collision free motions fast for manipulators with six degrees of freedom (DOF) within 3D environments. After a short review of other implemented 3D motion planners, an outline of the CGR search (combination of goal-directed and randomized search) is given. CGR search pursues a heuristic strategy to effectively find a path in even high-dimensional configuration spaces (C-spaces). The search space, however, is not constructed explicitly, but only tested in certain points determined by the search. Every test whether a point lies in free C-space or not requires a geometric intersection computation. This collision test is very efficient due to a hierarchical object representation. The experimental results show the performance of the proposed motion planner in several realistic tasks, including a snake-like manipulator with six degrees of freedom and a PUMA robot reorienting a bulky load through a gate.<>