主成分分析在液压泵故障检测中的应用研究

L. Siyuan, Ding Linlin, Jiang Wanlu
{"title":"主成分分析在液压泵故障检测中的应用研究","authors":"L. Siyuan, Ding Linlin, Jiang Wanlu","doi":"10.1109/FPM.2011.6045752","DOIUrl":null,"url":null,"abstract":"This paper presents a method of squared prediction error changes based on Principal Component Analysis(PCA) of Q statistics to deal with real-time online fault detection of hydraulic pump. In this method, feature vector sample set expressed by frequency band energy information of wavelet packet decomposition is extracted by effective signal processing and feature. Then, establish main element model by normal samples and compare the samples with test samples achieved by Q statistics method to detect faults;Next, describe fault change characteristics with contribution diagram; lastly, test results of different fault types are researched through experimental data of center of spring failure, off-shoe, slipper and loose boot of axial piston pump.","PeriodicalId":241423,"journal":{"name":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Study on application of Principal Component Analysis to fault detection in hydraulic pump\",\"authors\":\"L. Siyuan, Ding Linlin, Jiang Wanlu\",\"doi\":\"10.1109/FPM.2011.6045752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of squared prediction error changes based on Principal Component Analysis(PCA) of Q statistics to deal with real-time online fault detection of hydraulic pump. In this method, feature vector sample set expressed by frequency band energy information of wavelet packet decomposition is extracted by effective signal processing and feature. Then, establish main element model by normal samples and compare the samples with test samples achieved by Q statistics method to detect faults;Next, describe fault change characteristics with contribution diagram; lastly, test results of different fault types are researched through experimental data of center of spring failure, off-shoe, slipper and loose boot of axial piston pump.\",\"PeriodicalId\":241423,\"journal\":{\"name\":\"Proceedings of 2011 International Conference on Fluid Power and Mechatronics\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 International Conference on Fluid Power and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPM.2011.6045752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPM.2011.6045752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于Q统计量主成分分析(PCA)的误差变化平方预测方法,用于液压泵实时在线故障检测。该方法通过有效的信号处理和特征提取,以小波包分解的频带能量信息表示特征向量样本集。然后,通过正态样本建立主元素模型,并与Q统计法得到的测试样本进行对比,检测故障;最后,通过轴向柱塞泵的弹簧中心失效、脱鞋、滑靴和靴套松动等试验数据,研究了不同故障类型的试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on application of Principal Component Analysis to fault detection in hydraulic pump
This paper presents a method of squared prediction error changes based on Principal Component Analysis(PCA) of Q statistics to deal with real-time online fault detection of hydraulic pump. In this method, feature vector sample set expressed by frequency band energy information of wavelet packet decomposition is extracted by effective signal processing and feature. Then, establish main element model by normal samples and compare the samples with test samples achieved by Q statistics method to detect faults;Next, describe fault change characteristics with contribution diagram; lastly, test results of different fault types are researched through experimental data of center of spring failure, off-shoe, slipper and loose boot of axial piston pump.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信