{"title":"微机械表面粘接系统的设计与建模","authors":"H. Han, L. Weiss, M. Reed","doi":"10.1109/SENSOR.1991.149053","DOIUrl":null,"url":null,"abstract":"Optimization of the design of a micromechanical surface fastening system is discussed based on a simple cantilevered beam model. Theoretical estimates indicate that the bonding strength of these microstructures can be as high as 11-17 MPa, or 1500-2000 psi. The equivalent surface energy corresponding to the stored strain energy during separation of two interlocked sample pairs is 14.6 mu J/cm/sup 2/. The authors also report preliminary experimental results; a bonding strength of 1.1 MPa or 160 psi per unit interlocked area has been achieved, which is in agreement with the theoretical approximation.<<ETX>>","PeriodicalId":273871,"journal":{"name":"TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design and modeling of a micromechanical surface bonding system\",\"authors\":\"H. Han, L. Weiss, M. Reed\",\"doi\":\"10.1109/SENSOR.1991.149053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of the design of a micromechanical surface fastening system is discussed based on a simple cantilevered beam model. Theoretical estimates indicate that the bonding strength of these microstructures can be as high as 11-17 MPa, or 1500-2000 psi. The equivalent surface energy corresponding to the stored strain energy during separation of two interlocked sample pairs is 14.6 mu J/cm/sup 2/. The authors also report preliminary experimental results; a bonding strength of 1.1 MPa or 160 psi per unit interlocked area has been achieved, which is in agreement with the theoretical approximation.<<ETX>>\",\"PeriodicalId\":273871,\"journal\":{\"name\":\"TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.1991.149053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.1991.149053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
讨论了基于简单悬臂梁模型的微机械表面紧固系统的优化设计。理论估计表明,这些微结构的结合强度可高达11-17 MPa,或1500-2000 psi。两对互锁试样分离时存储的应变能对应的等效表面能为14.6 mu J/cm/sup 2/。作者还报告了初步的实验结果;结合强度达到1.1 MPa /单位联锁面积或160 psi /单位联锁面积,与理论近似一致。
Design and modeling of a micromechanical surface bonding system
Optimization of the design of a micromechanical surface fastening system is discussed based on a simple cantilevered beam model. Theoretical estimates indicate that the bonding strength of these microstructures can be as high as 11-17 MPa, or 1500-2000 psi. The equivalent surface energy corresponding to the stored strain energy during separation of two interlocked sample pairs is 14.6 mu J/cm/sup 2/. The authors also report preliminary experimental results; a bonding strength of 1.1 MPa or 160 psi per unit interlocked area has been achieved, which is in agreement with the theoretical approximation.<>