应用于嵌入式人工智能的脉冲神经网络阈下神经形态装置

C. Loyez, K. Carpentier, I. Sourikopoulos, F. Danneville
{"title":"应用于嵌入式人工智能的脉冲神经网络阈下神经形态装置","authors":"C. Loyez, K. Carpentier, I. Sourikopoulos, F. Danneville","doi":"10.1109/NEWCAS50681.2021.9462779","DOIUrl":null,"url":null,"abstract":"Energy autonomy is one of the major challenges of embedded Artificial Intelligence. Among the candidate technologies likely to take up such a challenge, spiking neural networks are the most promising because of both their spatio-temporal and sparse representation of the information. In this context, this paper presents a neuromorphic approach based on an industrial CMOS technology and adopting an entirely subthreshold mode of operation (supply voltage VDD lower than the MOSFET threshold voltage). The detailed topologies of fabricated artificial neurons and synapses are presented as well as experimental results, validating an energy consumption of the order of a few femto-Joules per spike. Also, an arrangement of neurons and synapses is proposed to qualify experimentally this subthreshold approach in the perspective of highly energy efficient spiking neural networks.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Subthreshold neuromorphic devices for Spiking Neural Networks applied to embedded A.I\",\"authors\":\"C. Loyez, K. Carpentier, I. Sourikopoulos, F. Danneville\",\"doi\":\"10.1109/NEWCAS50681.2021.9462779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy autonomy is one of the major challenges of embedded Artificial Intelligence. Among the candidate technologies likely to take up such a challenge, spiking neural networks are the most promising because of both their spatio-temporal and sparse representation of the information. In this context, this paper presents a neuromorphic approach based on an industrial CMOS technology and adopting an entirely subthreshold mode of operation (supply voltage VDD lower than the MOSFET threshold voltage). The detailed topologies of fabricated artificial neurons and synapses are presented as well as experimental results, validating an energy consumption of the order of a few femto-Joules per spike. Also, an arrangement of neurons and synapses is proposed to qualify experimentally this subthreshold approach in the perspective of highly energy efficient spiking neural networks.\",\"PeriodicalId\":373745,\"journal\":{\"name\":\"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS50681.2021.9462779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

能源自主是嵌入式人工智能面临的主要挑战之一。在可能接受这一挑战的候选技术中,尖峰神经网络是最有希望的,因为它们具有时空和信息的稀疏表示。在此背景下,本文提出了一种基于工业CMOS技术的神经形态方法,并采用完全亚阈值工作模式(电源电压VDD低于MOSFET阈值电压)。本文介绍了人造神经元和突触的详细拓扑结构以及实验结果,验证了每尖峰几飞焦耳的能量消耗。此外,提出了一种神经元和突触的排列方式,从高能量高效的尖峰神经网络的角度对这种阈下方法进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subthreshold neuromorphic devices for Spiking Neural Networks applied to embedded A.I
Energy autonomy is one of the major challenges of embedded Artificial Intelligence. Among the candidate technologies likely to take up such a challenge, spiking neural networks are the most promising because of both their spatio-temporal and sparse representation of the information. In this context, this paper presents a neuromorphic approach based on an industrial CMOS technology and adopting an entirely subthreshold mode of operation (supply voltage VDD lower than the MOSFET threshold voltage). The detailed topologies of fabricated artificial neurons and synapses are presented as well as experimental results, validating an energy consumption of the order of a few femto-Joules per spike. Also, an arrangement of neurons and synapses is proposed to qualify experimentally this subthreshold approach in the perspective of highly energy efficient spiking neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信