基于纹理特征的动态手势识别

S. E. Agab, F. Chelali
{"title":"基于纹理特征的动态手势识别","authors":"S. E. Agab, F. Chelali","doi":"10.1109/ICAEE47123.2019.9014683","DOIUrl":null,"url":null,"abstract":"This article proposes an implementation of a dynamic gesture recognition system using different textural descriptors such as the basic Local Binary Patterns (LBP), Rotation Invariant and Uniform LBP (LBPriu2), Center-Symmetric LBP (CS-LBP) and Edge Histogram Descriptor (EHD). The recognition task is performed using two variants of the Artificial Neural Network (ANN), which are the Multilayer Perceptron (MLP) and the Radial Basis Function neural network (RBF). Experiments were performed on a user-independent database with a simple background where 95.83% recognition rate was achieved. A comparison with previous works shows the efficiency of our system.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic hand gesture recognition based on textural features\",\"authors\":\"S. E. Agab, F. Chelali\",\"doi\":\"10.1109/ICAEE47123.2019.9014683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an implementation of a dynamic gesture recognition system using different textural descriptors such as the basic Local Binary Patterns (LBP), Rotation Invariant and Uniform LBP (LBPriu2), Center-Symmetric LBP (CS-LBP) and Edge Histogram Descriptor (EHD). The recognition task is performed using two variants of the Artificial Neural Network (ANN), which are the Multilayer Perceptron (MLP) and the Radial Basis Function neural network (RBF). Experiments were performed on a user-independent database with a simple background where 95.83% recognition rate was achieved. A comparison with previous works shows the efficiency of our system.\",\"PeriodicalId\":197612,\"journal\":{\"name\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE47123.2019.9014683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9014683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一个动态手势识别系统的实现,使用不同的纹理描述符,如基本的局部二值模式(LBP),旋转不变和均匀LBP (LBPriu2),中心对称LBP (CS-LBP)和边缘直方图描述符(EHD)。识别任务使用人工神经网络(ANN)的两种变体,即多层感知器(MLP)和径向基函数神经网络(RBF)来完成。实验在简单背景下独立于用户的数据库上进行,识别率达到95.83%。与以往工作的对比表明了系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic hand gesture recognition based on textural features
This article proposes an implementation of a dynamic gesture recognition system using different textural descriptors such as the basic Local Binary Patterns (LBP), Rotation Invariant and Uniform LBP (LBPriu2), Center-Symmetric LBP (CS-LBP) and Edge Histogram Descriptor (EHD). The recognition task is performed using two variants of the Artificial Neural Network (ANN), which are the Multilayer Perceptron (MLP) and the Radial Basis Function neural network (RBF). Experiments were performed on a user-independent database with a simple background where 95.83% recognition rate was achieved. A comparison with previous works shows the efficiency of our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信