{"title":"Grover算法中两种数据编码方法对量子代价影响的比较","authors":"S. Dhawan, M. Perkowski","doi":"10.1109/ISMVL.2011.29","DOIUrl":null,"url":null,"abstract":"It is important to be able to calculate realistic estimates of quantum costs for real oracles used in quantum algorithms. In this paper, we compare Perkowski's[1] oracle data encoding method with Hogg's[2] encoding method for Grover algorithm[3], to examine the decrease in Oracle gate cost, if any, for four common constraint satisfaction problems: Graph coloring, Satisfiability, Send-More-Money and Max Clique.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of Influence of Two Data-Encoding Methods for Grover Algorithm on Quantum Costs\",\"authors\":\"S. Dhawan, M. Perkowski\",\"doi\":\"10.1109/ISMVL.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to be able to calculate realistic estimates of quantum costs for real oracles used in quantum algorithms. In this paper, we compare Perkowski's[1] oracle data encoding method with Hogg's[2] encoding method for Grover algorithm[3], to examine the decrease in Oracle gate cost, if any, for four common constraint satisfaction problems: Graph coloring, Satisfiability, Send-More-Money and Max Clique.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Influence of Two Data-Encoding Methods for Grover Algorithm on Quantum Costs
It is important to be able to calculate realistic estimates of quantum costs for real oracles used in quantum algorithms. In this paper, we compare Perkowski's[1] oracle data encoding method with Hogg's[2] encoding method for Grover algorithm[3], to examine the decrease in Oracle gate cost, if any, for four common constraint satisfaction problems: Graph coloring, Satisfiability, Send-More-Money and Max Clique.