{"title":"采用异质外延生长方法制备高迁移率的Ge pMOS","authors":"A. Nayfeh, C. O. Chui, T. Yonehara, K.C. Saraswa","doi":"10.1109/DRC.2005.1553069","DOIUrl":null,"url":null,"abstract":"a) C. O. Chui was with the Dept. of EE at Stanford and is now with Intel Corporation, Santa Clara, CA 95054, USA b) T. Yonehara is with Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0193, Japan Abstract Using a novel multi-step in-situ growth and hydrogen annealing process heteroepitaxial-germanium layers have been grown directly on silicon, with defects confined near the Si/Ge interface, thus not threading to the surface as expected in this 4.2% lattice mismatched system. The results achieved are fully-relaxed smooth single crystal Ge layers on Si with defect density reduced to ~ 1 x 10 cm without a graded buffer layer or CMP step. To demonstrate the quality of the Ge layers, pMOSFETs have been fabricated using a sub-500 C process with low field mobility of ~250 cm/V-sec.","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High mobility Ge pMOS fabricated using a novel heteroepitaxial ge on Si growth method\",\"authors\":\"A. Nayfeh, C. O. Chui, T. Yonehara, K.C. Saraswa\",\"doi\":\"10.1109/DRC.2005.1553069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"a) C. O. Chui was with the Dept. of EE at Stanford and is now with Intel Corporation, Santa Clara, CA 95054, USA b) T. Yonehara is with Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0193, Japan Abstract Using a novel multi-step in-situ growth and hydrogen annealing process heteroepitaxial-germanium layers have been grown directly on silicon, with defects confined near the Si/Ge interface, thus not threading to the surface as expected in this 4.2% lattice mismatched system. The results achieved are fully-relaxed smooth single crystal Ge layers on Si with defect density reduced to ~ 1 x 10 cm without a graded buffer layer or CMP step. To demonstrate the quality of the Ge layers, pMOSFETs have been fabricated using a sub-500 C process with low field mobility of ~250 cm/V-sec.\",\"PeriodicalId\":306160,\"journal\":{\"name\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2005.1553069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"63rd Device Research Conference Digest, 2005. DRC '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2005.1553069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
a) C. O. Chui曾任职于斯坦福大学电子电气系,现任职于英特尔公司,Santa Clara, CA 95054, USA。b) T. Yonehara任职于佳能公司,leadedge Technology Development总部,5-1,Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0193。摘要:利用一种新的多步骤原位生长和氢退火工艺,异质外延锗层直接生长在硅上,缺陷限制在Si/Ge界面附近。因此,在这个4.2%的晶格不匹配系统中,不会像预期的那样穿到表面。结果表明,在没有渐变缓冲层或CMP步骤的情况下,在Si上获得了完全松弛的光滑单晶Ge层,缺陷密度降至~ 1 x 10 cm。为了证明Ge层的质量,pmosfet使用低于500 C的工艺制造,具有~250 cm/V-sec的低场迁移率。
High mobility Ge pMOS fabricated using a novel heteroepitaxial ge on Si growth method
a) C. O. Chui was with the Dept. of EE at Stanford and is now with Intel Corporation, Santa Clara, CA 95054, USA b) T. Yonehara is with Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0193, Japan Abstract Using a novel multi-step in-situ growth and hydrogen annealing process heteroepitaxial-germanium layers have been grown directly on silicon, with defects confined near the Si/Ge interface, thus not threading to the surface as expected in this 4.2% lattice mismatched system. The results achieved are fully-relaxed smooth single crystal Ge layers on Si with defect density reduced to ~ 1 x 10 cm without a graded buffer layer or CMP step. To demonstrate the quality of the Ge layers, pMOSFETs have been fabricated using a sub-500 C process with low field mobility of ~250 cm/V-sec.