基于人工神经网络的光伏最大ppt估计

S. Farhat, R. Alaoui, A. Kahaji, L. Bouhouch
{"title":"基于人工神经网络的光伏最大ppt估计","authors":"S. Farhat, R. Alaoui, A. Kahaji, L. Bouhouch","doi":"10.1109/IRSEC.2013.6529641","DOIUrl":null,"url":null,"abstract":"The approach adopted in this study is to build a model of artificial neural network based on the architecture Multi-layer Perceptron (MLP) whose training is based on practical data. These are measured for a photovoltaic panel (PPV) around data acquisition chain composed of a certain number of sensors including temperature and global solar radiation. The objective is to track, in real time, the maximum power point (MPPT: Maximum Power Point Tracker) by using the model proposed MLP, directly from the Data irradiance namely G and the temperature T. This proposed modeling MLP is validated by using the statements measurements.","PeriodicalId":130577,"journal":{"name":"2013 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Estimating the photovoltaic MPPT by artificial neural network\",\"authors\":\"S. Farhat, R. Alaoui, A. Kahaji, L. Bouhouch\",\"doi\":\"10.1109/IRSEC.2013.6529641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The approach adopted in this study is to build a model of artificial neural network based on the architecture Multi-layer Perceptron (MLP) whose training is based on practical data. These are measured for a photovoltaic panel (PPV) around data acquisition chain composed of a certain number of sensors including temperature and global solar radiation. The objective is to track, in real time, the maximum power point (MPPT: Maximum Power Point Tracker) by using the model proposed MLP, directly from the Data irradiance namely G and the temperature T. This proposed modeling MLP is validated by using the statements measurements.\",\"PeriodicalId\":130577,\"journal\":{\"name\":\"2013 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2013.6529641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2013.6529641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文采用的方法是基于多层感知器(multilayer Perceptron, MLP)架构构建人工神经网络模型,该模型的训练基于实际数据。这些是在光伏板(PPV)周围由一定数量的传感器组成的数据采集链上测量的,包括温度和全球太阳辐射。目标是通过使用模型提出的MLP,直接从数据辐照度G和温度t中实时跟踪最大功率点(MPPT:最大功率点跟踪器)。该模型提出的MLP通过使用报表测量进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the photovoltaic MPPT by artificial neural network
The approach adopted in this study is to build a model of artificial neural network based on the architecture Multi-layer Perceptron (MLP) whose training is based on practical data. These are measured for a photovoltaic panel (PPV) around data acquisition chain composed of a certain number of sensors including temperature and global solar radiation. The objective is to track, in real time, the maximum power point (MPPT: Maximum Power Point Tracker) by using the model proposed MLP, directly from the Data irradiance namely G and the temperature T. This proposed modeling MLP is validated by using the statements measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信