基于注意的卷积神经网络抑制MRI吉布斯响伪影

M. Penkin, A. Krylov, A. Khvostikov
{"title":"基于注意的卷积神经网络抑制MRI吉布斯响伪影","authors":"M. Penkin, A. Krylov, A. Khvostikov","doi":"10.51130/graphicon-2020-2-3-34","DOIUrl":null,"url":null,"abstract":"Gibbs-ringing artifact is a common artifact in MRI image processing. As MRI raw data is taken in a frequency domain, 2D in- verse discrete Fourier transform is applied to visualize data. Inability to take inverse Fourier transform of full spectrum (full k-space) leads to the insufficient sampling of the high frequency data and results in a well-known Gibbs phenomenon. It is worth to notice that truncation of high frequency information generates a significant blur, thus some techniques from other image restoration problems (for example, image deblur task) can be successfully used. We propose attention-based convolutional neural network for Gibbs-ringing reduction which is the extension of recently proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional Neural Network). Proposed method includes simplified non-linear mapping, amended by LRNN (Layer Recurrent Neural Network) refinement block with feature attention module, controlling the correlation between input and output tensors of the refinement unit. The research shows that the proposed post-processing refinement construction considerably simplifies the non-linear mapping.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attention-based Convolutional Neural Network for MRI Gibbs-ringing Artifact Suppression\",\"authors\":\"M. Penkin, A. Krylov, A. Khvostikov\",\"doi\":\"10.51130/graphicon-2020-2-3-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gibbs-ringing artifact is a common artifact in MRI image processing. As MRI raw data is taken in a frequency domain, 2D in- verse discrete Fourier transform is applied to visualize data. Inability to take inverse Fourier transform of full spectrum (full k-space) leads to the insufficient sampling of the high frequency data and results in a well-known Gibbs phenomenon. It is worth to notice that truncation of high frequency information generates a significant blur, thus some techniques from other image restoration problems (for example, image deblur task) can be successfully used. We propose attention-based convolutional neural network for Gibbs-ringing reduction which is the extension of recently proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional Neural Network). Proposed method includes simplified non-linear mapping, amended by LRNN (Layer Recurrent Neural Network) refinement block with feature attention module, controlling the correlation between input and output tensors of the refinement unit. The research shows that the proposed post-processing refinement construction considerably simplifies the non-linear mapping.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-3-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-3-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

吉布斯振铃伪影是MRI图像处理中常见的伪影。由于MRI原始数据是在频域内采集的,因此采用二维反离散傅里叶变换对数据进行可视化处理。不能对全频谱(全k空间)进行傅里叶反变换会导致高频数据采样不足,并导致众所周知的吉布斯现象。值得注意的是,截断高频信息会产生明显的模糊,因此可以成功地使用其他图像恢复问题中的一些技术(例如图像去模糊任务)。本文提出了一种基于注意力的gibbs -ring约简卷积神经网络,它是对最近提出的GAS-CNN (gibbs -ring伪影抑制卷积神经网络)的扩展。该方法采用简化的非线性映射,通过带特征关注模块的LRNN (Layer Recurrent Neural Network)细化块进行修正,控制细化单元输入和输出张量之间的相关性。研究表明,所提出的后处理细化构造大大简化了非线性映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-based Convolutional Neural Network for MRI Gibbs-ringing Artifact Suppression
Gibbs-ringing artifact is a common artifact in MRI image processing. As MRI raw data is taken in a frequency domain, 2D in- verse discrete Fourier transform is applied to visualize data. Inability to take inverse Fourier transform of full spectrum (full k-space) leads to the insufficient sampling of the high frequency data and results in a well-known Gibbs phenomenon. It is worth to notice that truncation of high frequency information generates a significant blur, thus some techniques from other image restoration problems (for example, image deblur task) can be successfully used. We propose attention-based convolutional neural network for Gibbs-ringing reduction which is the extension of recently proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional Neural Network). Proposed method includes simplified non-linear mapping, amended by LRNN (Layer Recurrent Neural Network) refinement block with feature attention module, controlling the correlation between input and output tensors of the refinement unit. The research shows that the proposed post-processing refinement construction considerably simplifies the non-linear mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信