Amitesh Sridharan, Shaahin Angizi, Sai Kiran Cherupally, Fan Zhang, Jae-sun Seo, Deliang Fan
{"title":"1.23 ghz 16kb可编程sram通用处理65nm加速器","authors":"Amitesh Sridharan, Shaahin Angizi, Sai Kiran Cherupally, Fan Zhang, Jae-sun Seo, Deliang Fan","doi":"10.1109/ESSCIRC55480.2022.9911440","DOIUrl":null,"url":null,"abstract":"We present a generic and programmable Processing-in-SRAM (PSRAM) accelerator chip design based on an 8T-SRAM array to accommodate a complete set of Boolean logic operations (e.g., NOR/NAND/XOR, both 2- and 3-input), majority, and full adder, for the first time, all in a single cycle. PSRAM provides the programmability required for in-memory computing platforms that could be used for various applications such as parallel vector operation, neural networks, and data encryption. The prototype design is implemented in a SRAM macro with size of 16 kb, demonstrating one of the fastest programmable in-memory computing system to date operating at 1.23 GHz. The 65nm prototype chip achieves system-level peak throughput of 1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in 65nm\",\"authors\":\"Amitesh Sridharan, Shaahin Angizi, Sai Kiran Cherupally, Fan Zhang, Jae-sun Seo, Deliang Fan\",\"doi\":\"10.1109/ESSCIRC55480.2022.9911440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generic and programmable Processing-in-SRAM (PSRAM) accelerator chip design based on an 8T-SRAM array to accommodate a complete set of Boolean logic operations (e.g., NOR/NAND/XOR, both 2- and 3-input), majority, and full adder, for the first time, all in a single cycle. PSRAM provides the programmability required for in-memory computing platforms that could be used for various applications such as parallel vector operation, neural networks, and data encryption. The prototype design is implemented in a SRAM macro with size of 16 kb, demonstrating one of the fastest programmable in-memory computing system to date operating at 1.23 GHz. The 65nm prototype chip achieves system-level peak throughput of 1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.\",\"PeriodicalId\":168466,\"journal\":{\"name\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC55480.2022.9911440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in 65nm
We present a generic and programmable Processing-in-SRAM (PSRAM) accelerator chip design based on an 8T-SRAM array to accommodate a complete set of Boolean logic operations (e.g., NOR/NAND/XOR, both 2- and 3-input), majority, and full adder, for the first time, all in a single cycle. PSRAM provides the programmability required for in-memory computing platforms that could be used for various applications such as parallel vector operation, neural networks, and data encryption. The prototype design is implemented in a SRAM macro with size of 16 kb, demonstrating one of the fastest programmable in-memory computing system to date operating at 1.23 GHz. The 65nm prototype chip achieves system-level peak throughput of 1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.