{"title":"基于模型的假人特征定位用于氧化物化学机械抛光可制造性","authors":"Ruiqi Tian, Martin D. F. Wong, R. Boone","doi":"10.1145/337292.337609","DOIUrl":null,"url":null,"abstract":"Chemical-mechanical polishing (CMP) is an enabling technique used in deep-submicron VLSI manufacturing to achieve uniformity in long range oxide planarization [1]. Post-CMP oxide topography is highly related to local spatial pattern density in layout. To change local pattern density, and thus ensure post-CMP planarization, dummy features are placed in layout. Based on models that accurately describe the relation between local pattern density and post-CMP planarization [7; 5; 9], a two-step procedure of global density assignment followed by local insertion is proposed to solve the dummy feature placement problem in the fixed-dissection regime with both single-layer and multiple-layer considerations. Two experiments, conducted with real design data, gave excellent results by reducing post-CMP topography variation from 767Å to 152Å in the single-layer formulation and by avoiding cumulative effect in the multiple-layer formulation. The result from single-layer formulation compares very favorably both to the rule-based approach widely used in industry and to the algorithm in [3]. The multiple-layer formulation has no previously published work.","PeriodicalId":237114,"journal":{"name":"Proceedings 37th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"Model-based dummy feature placement for oxide chemical-mechanical polishing manufacturability\",\"authors\":\"Ruiqi Tian, Martin D. F. Wong, R. Boone\",\"doi\":\"10.1145/337292.337609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical-mechanical polishing (CMP) is an enabling technique used in deep-submicron VLSI manufacturing to achieve uniformity in long range oxide planarization [1]. Post-CMP oxide topography is highly related to local spatial pattern density in layout. To change local pattern density, and thus ensure post-CMP planarization, dummy features are placed in layout. Based on models that accurately describe the relation between local pattern density and post-CMP planarization [7; 5; 9], a two-step procedure of global density assignment followed by local insertion is proposed to solve the dummy feature placement problem in the fixed-dissection regime with both single-layer and multiple-layer considerations. Two experiments, conducted with real design data, gave excellent results by reducing post-CMP topography variation from 767Å to 152Å in the single-layer formulation and by avoiding cumulative effect in the multiple-layer formulation. The result from single-layer formulation compares very favorably both to the rule-based approach widely used in industry and to the algorithm in [3]. The multiple-layer formulation has no previously published work.\",\"PeriodicalId\":237114,\"journal\":{\"name\":\"Proceedings 37th Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 37th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/337292.337609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 37th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/337292.337609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based dummy feature placement for oxide chemical-mechanical polishing manufacturability
Chemical-mechanical polishing (CMP) is an enabling technique used in deep-submicron VLSI manufacturing to achieve uniformity in long range oxide planarization [1]. Post-CMP oxide topography is highly related to local spatial pattern density in layout. To change local pattern density, and thus ensure post-CMP planarization, dummy features are placed in layout. Based on models that accurately describe the relation between local pattern density and post-CMP planarization [7; 5; 9], a two-step procedure of global density assignment followed by local insertion is proposed to solve the dummy feature placement problem in the fixed-dissection regime with both single-layer and multiple-layer considerations. Two experiments, conducted with real design data, gave excellent results by reducing post-CMP topography variation from 767Å to 152Å in the single-layer formulation and by avoiding cumulative effect in the multiple-layer formulation. The result from single-layer formulation compares very favorably both to the rule-based approach widely used in industry and to the algorithm in [3]. The multiple-layer formulation has no previously published work.