{"title":"掺杂Eu3+的In2O3的电子性质研究:第一性原理计算","authors":"Fengxue Tan, Guangsi Ma, Jinhua Li, Li Guan","doi":"10.1117/12.2668534","DOIUrl":null,"url":null,"abstract":"As an n-type wide band gap nanomaterial (2.7-2.9 eV), In2O3 has an important application in gas sensing, light-emitting diodes, semiconductor lasers, medical imaging and other fields. Research shows that the luminous efficiency of In2O3 can be improved through rare earth doping. Eu3+, Er3+ doping has been widely studied, but there is no relevant explanation for the transition mechanism. In this paper, the formation energy of Eu3+ doped in different site as a functional of temperature and electronic properties was calculated by using first principal calculations. The result showed that under O-rich conditions, the formation energy is negative below 500 K regardless of the doping site, which proves that rare earth atoms below 500 K are very easy to be doped, especially Eu3+ at the In1(3) (or In1) site and the Eu3+ doped decrease the band gap. Then the best synthesis conditions are found to determine the doping site, which provides a theoretical basis for the experiment. At the same time, considering the experimental conditions oxygen vacancy (VO) also exist, we calculated the band structure of the In2O3 with VO and Eu3+ doped. It provides a basis for in-depth analysis of the function of impurity energy levels formed after rare earth element doping in the experiment from the matrix to the luminous center.","PeriodicalId":259102,"journal":{"name":"Optical Technology, Semiconductor Materials, and Devices","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the electronic properties of In2O3 doped with Eu3+: a first principle calculation\",\"authors\":\"Fengxue Tan, Guangsi Ma, Jinhua Li, Li Guan\",\"doi\":\"10.1117/12.2668534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an n-type wide band gap nanomaterial (2.7-2.9 eV), In2O3 has an important application in gas sensing, light-emitting diodes, semiconductor lasers, medical imaging and other fields. Research shows that the luminous efficiency of In2O3 can be improved through rare earth doping. Eu3+, Er3+ doping has been widely studied, but there is no relevant explanation for the transition mechanism. In this paper, the formation energy of Eu3+ doped in different site as a functional of temperature and electronic properties was calculated by using first principal calculations. The result showed that under O-rich conditions, the formation energy is negative below 500 K regardless of the doping site, which proves that rare earth atoms below 500 K are very easy to be doped, especially Eu3+ at the In1(3) (or In1) site and the Eu3+ doped decrease the band gap. Then the best synthesis conditions are found to determine the doping site, which provides a theoretical basis for the experiment. At the same time, considering the experimental conditions oxygen vacancy (VO) also exist, we calculated the band structure of the In2O3 with VO and Eu3+ doped. It provides a basis for in-depth analysis of the function of impurity energy levels formed after rare earth element doping in the experiment from the matrix to the luminous center.\",\"PeriodicalId\":259102,\"journal\":{\"name\":\"Optical Technology, Semiconductor Materials, and Devices\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Technology, Semiconductor Materials, and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2668534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Technology, Semiconductor Materials, and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2668534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on the electronic properties of In2O3 doped with Eu3+: a first principle calculation
As an n-type wide band gap nanomaterial (2.7-2.9 eV), In2O3 has an important application in gas sensing, light-emitting diodes, semiconductor lasers, medical imaging and other fields. Research shows that the luminous efficiency of In2O3 can be improved through rare earth doping. Eu3+, Er3+ doping has been widely studied, but there is no relevant explanation for the transition mechanism. In this paper, the formation energy of Eu3+ doped in different site as a functional of temperature and electronic properties was calculated by using first principal calculations. The result showed that under O-rich conditions, the formation energy is negative below 500 K regardless of the doping site, which proves that rare earth atoms below 500 K are very easy to be doped, especially Eu3+ at the In1(3) (or In1) site and the Eu3+ doped decrease the band gap. Then the best synthesis conditions are found to determine the doping site, which provides a theoretical basis for the experiment. At the same time, considering the experimental conditions oxygen vacancy (VO) also exist, we calculated the band structure of the In2O3 with VO and Eu3+ doped. It provides a basis for in-depth analysis of the function of impurity energy levels formed after rare earth element doping in the experiment from the matrix to the luminous center.