考虑系统不确定性的船舶自适应RBF神经网络航向保持控制

Sihang Zhang, Qiang Zhang, Wen-Li Su, Haoyang Li, Xudong Gai
{"title":"考虑系统不确定性的船舶自适应RBF神经网络航向保持控制","authors":"Sihang Zhang, Qiang Zhang, Wen-Li Su, Haoyang Li, Xudong Gai","doi":"10.1109/DDCLS58216.2023.10166581","DOIUrl":null,"url":null,"abstract":"An adaptive RBF neural network-based nonlinear feedback heading keeping control scheme is proposed for the problem of uncertainty in the dynamic parameters and perturbations of a surface ship's heading keeping model under input saturation. An adaptive neural network technique is used to estimate the model dynamic parameters and external time-varying perturbations, while the minimum learning parameters are used to reduce the computational load, and subsequently, an adaptive neural network nonlinear feedback control scheme is designed using a function with input saturation characteristics embedded in the control law. On the basis of Lyapunov's theorem, it is shown that all signals are consistently bounded in a perturbed uncertain heading-holding system. Finally, the simulation and comparison verify the effectiveness of the designed control scheme.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ship Adaptive RBF Neural Network Course Keeping Control Considering System Uncertainty\",\"authors\":\"Sihang Zhang, Qiang Zhang, Wen-Li Su, Haoyang Li, Xudong Gai\",\"doi\":\"10.1109/DDCLS58216.2023.10166581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive RBF neural network-based nonlinear feedback heading keeping control scheme is proposed for the problem of uncertainty in the dynamic parameters and perturbations of a surface ship's heading keeping model under input saturation. An adaptive neural network technique is used to estimate the model dynamic parameters and external time-varying perturbations, while the minimum learning parameters are used to reduce the computational load, and subsequently, an adaptive neural network nonlinear feedback control scheme is designed using a function with input saturation characteristics embedded in the control law. On the basis of Lyapunov's theorem, it is shown that all signals are consistently bounded in a perturbed uncertain heading-holding system. Finally, the simulation and comparison verify the effectiveness of the designed control scheme.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对输入饱和条件下水面舰艇航向保持模型动态参数的不确定性和摄动问题,提出了一种基于自适应RBF神经网络的非线性反馈航向保持控制方案。采用自适应神经网络技术对模型动态参数和外界时变扰动进行估计,利用最小学习参数减少计算量,并在控制律中嵌入具有输入饱和特征的函数,设计了自适应神经网络非线性反馈控制方案。利用李雅普诺夫定理,证明了摄动不确定航向保持系统中所有信号都是一致有界的。最后通过仿真和对比验证了所设计控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship Adaptive RBF Neural Network Course Keeping Control Considering System Uncertainty
An adaptive RBF neural network-based nonlinear feedback heading keeping control scheme is proposed for the problem of uncertainty in the dynamic parameters and perturbations of a surface ship's heading keeping model under input saturation. An adaptive neural network technique is used to estimate the model dynamic parameters and external time-varying perturbations, while the minimum learning parameters are used to reduce the computational load, and subsequently, an adaptive neural network nonlinear feedback control scheme is designed using a function with input saturation characteristics embedded in the control law. On the basis of Lyapunov's theorem, it is shown that all signals are consistently bounded in a perturbed uncertain heading-holding system. Finally, the simulation and comparison verify the effectiveness of the designed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信