高级微处理器上的时序驱动线路

P. Kartschoke, S. Geissler
{"title":"高级微处理器上的时序驱动线路","authors":"P. Kartschoke, S. Geissler","doi":"10.1109/DSD.2001.952352","DOIUrl":null,"url":null,"abstract":"The effect of wire delay within critical timing paths is becoming an increasing problem. By comparing the large improvement of transistor performance, due to shrinking L/sub eff/ or new technology such as silicon on insulator, versus the smaller improvements of wire delay, such as copper wires and better dielectrics, it can be seen that the wiring within an advanced microprocessor will become a more dominant portion of the critical paths. In deep sub-micron designs it is crucial to analyze and improve any wire dominated paths while assuming that the transistor delay continues to improve. This paper describes wire related improvements, such as an algorithmic wiring approach, wire bending and clock skew reduction that is used in the timing convergence of an advanced PowerPC microprocessor. The impact of wiring improvements is evaluated on the timing, clocking and wireability of the microprocessor.","PeriodicalId":285358,"journal":{"name":"Proceedings Euromicro Symposium on Digital Systems Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing driven wiring on an advanced microprocessor\",\"authors\":\"P. Kartschoke, S. Geissler\",\"doi\":\"10.1109/DSD.2001.952352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of wire delay within critical timing paths is becoming an increasing problem. By comparing the large improvement of transistor performance, due to shrinking L/sub eff/ or new technology such as silicon on insulator, versus the smaller improvements of wire delay, such as copper wires and better dielectrics, it can be seen that the wiring within an advanced microprocessor will become a more dominant portion of the critical paths. In deep sub-micron designs it is crucial to analyze and improve any wire dominated paths while assuming that the transistor delay continues to improve. This paper describes wire related improvements, such as an algorithmic wiring approach, wire bending and clock skew reduction that is used in the timing convergence of an advanced PowerPC microprocessor. The impact of wiring improvements is evaluated on the timing, clocking and wireability of the microprocessor.\",\"PeriodicalId\":285358,\"journal\":{\"name\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2001.952352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2001.952352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键时序路径中线延迟的影响已成为一个日益突出的问题。通过比较由于L/sub / /或新技术(如绝缘体上的硅)的缩小而导致的晶体管性能的大幅提高,与导线延迟的较小改进(如铜线和更好的电介质)相比,可以看出,先进微处理器内的布线将成为关键路径中更主要的部分。在深亚微米设计中,在假设晶体管延迟持续改善的情况下,分析和改进任何导线主导路径是至关重要的。本文描述了电线相关的改进,例如算法布线方法,电线弯曲和时钟倾斜减少,用于高级PowerPC微处理器的定时收敛。对微处理器的时序、时钟和可连接性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timing driven wiring on an advanced microprocessor
The effect of wire delay within critical timing paths is becoming an increasing problem. By comparing the large improvement of transistor performance, due to shrinking L/sub eff/ or new technology such as silicon on insulator, versus the smaller improvements of wire delay, such as copper wires and better dielectrics, it can be seen that the wiring within an advanced microprocessor will become a more dominant portion of the critical paths. In deep sub-micron designs it is crucial to analyze and improve any wire dominated paths while assuming that the transistor delay continues to improve. This paper describes wire related improvements, such as an algorithmic wiring approach, wire bending and clock skew reduction that is used in the timing convergence of an advanced PowerPC microprocessor. The impact of wiring improvements is evaluated on the timing, clocking and wireability of the microprocessor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信