采用自适应采样率的压缩视频传感

M. Azghani, A. Aghagolzadeh, M. Aghagolzadeh
{"title":"采用自适应采样率的压缩视频传感","authors":"M. Azghani, A. Aghagolzadeh, M. Aghagolzadeh","doi":"10.1109/ISTEL.2010.5734115","DOIUrl":null,"url":null,"abstract":"Compressive video sampling is an application of compressed sensing (CS) theory which samples a signal below the Shannon-Nyquist rate. In this paper, we present a compressed video sensing method that samples the blocks with adaptive sampling rate. The edge of the image is exploited to define a deficiency factor for blocks. Considering this factor, we determine sampling rates independently for each block. The simulation results show that the proposed method outperforms the conventional CS in image quality for the same compression ratio.","PeriodicalId":306663,"journal":{"name":"2010 5th International Symposium on Telecommunications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressed video sensing using adaptive sampling rate\",\"authors\":\"M. Azghani, A. Aghagolzadeh, M. Aghagolzadeh\",\"doi\":\"10.1109/ISTEL.2010.5734115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive video sampling is an application of compressed sensing (CS) theory which samples a signal below the Shannon-Nyquist rate. In this paper, we present a compressed video sensing method that samples the blocks with adaptive sampling rate. The edge of the image is exploited to define a deficiency factor for blocks. Considering this factor, we determine sampling rates independently for each block. The simulation results show that the proposed method outperforms the conventional CS in image quality for the same compression ratio.\",\"PeriodicalId\":306663,\"journal\":{\"name\":\"2010 5th International Symposium on Telecommunications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2010.5734115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2010.5734115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

压缩视频采样是压缩感知(CS)理论的一种应用,它对低于Shannon-Nyquist速率的信号进行采样。本文提出了一种基于自适应采样率的压缩视频感知方法。利用图像的边缘来定义块的缺陷因子。考虑到这个因素,我们独立地确定每个块的采样率。仿真结果表明,在相同压缩比下,该方法在图像质量上优于传统的压缩比算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed video sensing using adaptive sampling rate
Compressive video sampling is an application of compressed sensing (CS) theory which samples a signal below the Shannon-Nyquist rate. In this paper, we present a compressed video sensing method that samples the blocks with adaptive sampling rate. The edge of the image is exploited to define a deficiency factor for blocks. Considering this factor, we determine sampling rates independently for each block. The simulation results show that the proposed method outperforms the conventional CS in image quality for the same compression ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信