Tao Huang, Shengjun Xue, Yumei Hu, Yiran Shi, Wei Jin
{"title":"基于数据隐私的工作流和数据协调放置方法","authors":"Tao Huang, Shengjun Xue, Yumei Hu, Yiran Shi, Wei Jin","doi":"10.1049/iet-cps.2020.0007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the rapid development of data acquisition technology, many industries data already have the characteristics of big data and cloud technology has provided strong support for the storage and complex calculations of these massive data. The meteorological department established the cloud data centre based on the existing storage and computing resources and re-arranged the historical data to reduce the historical data access time of applications. However, the placement of each workflow and input data also affects the average data access time, which in turn affects the computing efficiency of the cloud data centre. At the same time, because of the collaborative processing of multiple nodes, the resource utilisation of cloud data centre has also been paid more and more attention. In addition, with the increase of data security requirements, some privacy conflict data should avoid being placed on the same or neighbouring nodes. In response to this challenge, based on the fat-tree network topology, this study proposes a data privacy protection-based collaborative placement strategy of workflow and data to jointly optimise the average data access time, the average resource utilisation, and the data conflict degree. Finally, a large number of experimental evaluations and comparative analyses verify the efficiency of the proposed method.</p>\n </div>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"5 4","pages":"342-350"},"PeriodicalIF":1.7000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cps.2020.0007","citationCount":"0","resultStr":"{\"title\":\"Data privacy-based coordinated placement method of workflows and data\",\"authors\":\"Tao Huang, Shengjun Xue, Yumei Hu, Yiran Shi, Wei Jin\",\"doi\":\"10.1049/iet-cps.2020.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>With the rapid development of data acquisition technology, many industries data already have the characteristics of big data and cloud technology has provided strong support for the storage and complex calculations of these massive data. The meteorological department established the cloud data centre based on the existing storage and computing resources and re-arranged the historical data to reduce the historical data access time of applications. However, the placement of each workflow and input data also affects the average data access time, which in turn affects the computing efficiency of the cloud data centre. At the same time, because of the collaborative processing of multiple nodes, the resource utilisation of cloud data centre has also been paid more and more attention. In addition, with the increase of data security requirements, some privacy conflict data should avoid being placed on the same or neighbouring nodes. In response to this challenge, based on the fat-tree network topology, this study proposes a data privacy protection-based collaborative placement strategy of workflow and data to jointly optimise the average data access time, the average resource utilisation, and the data conflict degree. Finally, a large number of experimental evaluations and comparative analyses verify the efficiency of the proposed method.</p>\\n </div>\",\"PeriodicalId\":36881,\"journal\":{\"name\":\"IET Cyber-Physical Systems: Theory and Applications\",\"volume\":\"5 4\",\"pages\":\"342-350\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cps.2020.0007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cyber-Physical Systems: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cps.2020.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cps.2020.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Data privacy-based coordinated placement method of workflows and data
With the rapid development of data acquisition technology, many industries data already have the characteristics of big data and cloud technology has provided strong support for the storage and complex calculations of these massive data. The meteorological department established the cloud data centre based on the existing storage and computing resources and re-arranged the historical data to reduce the historical data access time of applications. However, the placement of each workflow and input data also affects the average data access time, which in turn affects the computing efficiency of the cloud data centre. At the same time, because of the collaborative processing of multiple nodes, the resource utilisation of cloud data centre has also been paid more and more attention. In addition, with the increase of data security requirements, some privacy conflict data should avoid being placed on the same or neighbouring nodes. In response to this challenge, based on the fat-tree network topology, this study proposes a data privacy protection-based collaborative placement strategy of workflow and data to jointly optimise the average data access time, the average resource utilisation, and the data conflict degree. Finally, a large number of experimental evaluations and comparative analyses verify the efficiency of the proposed method.