{"title":"运用基础词表征研究词汇概念理论","authors":"Dylan Ebert, Ellie Pavlick","doi":"10.18653/v1/W19-2918","DOIUrl":null,"url":null,"abstract":"The fields of cognitive science and philosophy have proposed many different theories for how humans represent “concepts”. Multiple such theories are compatible with state-of-the-art NLP methods, and could in principle be operationalized using neural networks. We focus on two particularly prominent theories–Classical Theory and Prototype Theory–in the context of visually-grounded lexical representations. We compare when and how the behavior of models based on these theories differs in terms of categorization and entailment tasks. Our preliminary results suggest that Classical-based representations perform better for entailment and Prototype-based representations perform better for categorization. We discuss plans for additional experiments needed to confirm these initial observations.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Grounded Word Representations to Study Theories of Lexical Concepts\",\"authors\":\"Dylan Ebert, Ellie Pavlick\",\"doi\":\"10.18653/v1/W19-2918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fields of cognitive science and philosophy have proposed many different theories for how humans represent “concepts”. Multiple such theories are compatible with state-of-the-art NLP methods, and could in principle be operationalized using neural networks. We focus on two particularly prominent theories–Classical Theory and Prototype Theory–in the context of visually-grounded lexical representations. We compare when and how the behavior of models based on these theories differs in terms of categorization and entailment tasks. Our preliminary results suggest that Classical-based representations perform better for entailment and Prototype-based representations perform better for categorization. We discuss plans for additional experiments needed to confirm these initial observations.\",\"PeriodicalId\":428409,\"journal\":{\"name\":\"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-2918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Grounded Word Representations to Study Theories of Lexical Concepts
The fields of cognitive science and philosophy have proposed many different theories for how humans represent “concepts”. Multiple such theories are compatible with state-of-the-art NLP methods, and could in principle be operationalized using neural networks. We focus on two particularly prominent theories–Classical Theory and Prototype Theory–in the context of visually-grounded lexical representations. We compare when and how the behavior of models based on these theories differs in terms of categorization and entailment tasks. Our preliminary results suggest that Classical-based representations perform better for entailment and Prototype-based representations perform better for categorization. We discuss plans for additional experiments needed to confirm these initial observations.