股票指数趋势走势短期预测的深度学习方法

V. Derbentsev, Vitalii Bezkorovainyi, Marina Silchenko, Andrii V. Hrabariev, Oksana Pomazun
{"title":"股票指数趋势走势短期预测的深度学习方法","authors":"V. Derbentsev, Vitalii Bezkorovainyi, Marina Silchenko, Andrii V. Hrabariev, Oksana Pomazun","doi":"10.1109/PICST54195.2021.9772235","DOIUrl":null,"url":null,"abstract":"This paper is discussed the problems of the short-term forecasting of trend movement stock indices using supervised Machine (Deep) Learning approach. For this purpose, we used Recurrent Neural Networks (RNNs) based on cells of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and stacking CNN- RNN. The main advantage of proposed approach is that CNN allows to automatically extracting features and hidden patterns from the data, which are pass to the input of the block LSTM for making prediction. For evaluation models we used daily data of five stock indices from 01/01/2015 to 1/06/2021. To assess the forecasting performance, we used the confusion matrix and Accuracy metrics and compared our results with Multilayer Perceptron (MLP) as a baseline. According to obtained results, stacking CNN-RNN outperformed MLP for all time series, but the LSTM model shown better results in flat conditions.","PeriodicalId":391592,"journal":{"name":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Approach for Short-Term Forecasting Trend Movement of Stock Indeces\",\"authors\":\"V. Derbentsev, Vitalii Bezkorovainyi, Marina Silchenko, Andrii V. Hrabariev, Oksana Pomazun\",\"doi\":\"10.1109/PICST54195.2021.9772235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is discussed the problems of the short-term forecasting of trend movement stock indices using supervised Machine (Deep) Learning approach. For this purpose, we used Recurrent Neural Networks (RNNs) based on cells of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and stacking CNN- RNN. The main advantage of proposed approach is that CNN allows to automatically extracting features and hidden patterns from the data, which are pass to the input of the block LSTM for making prediction. For evaluation models we used daily data of five stock indices from 01/01/2015 to 1/06/2021. To assess the forecasting performance, we used the confusion matrix and Accuracy metrics and compared our results with Multilayer Perceptron (MLP) as a baseline. According to obtained results, stacking CNN-RNN outperformed MLP for all time series, but the LSTM model shown better results in flat conditions.\",\"PeriodicalId\":391592,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICST54195.2021.9772235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST54195.2021.9772235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了利用有监督机器(深度)学习方法进行趋势走势股票指数短期预测的问题。为此,我们使用了基于长短期记忆(LSTM)细胞的递归神经网络(RNN)、卷积神经网络(CNN)和堆叠CNN- RNN。该方法的主要优点是CNN允许自动从数据中提取特征和隐藏模式,并将其传递给块LSTM的输入进行预测。对于评估模型,我们使用了2015年1月1日至2021年6月1日五个股票指数的日常数据。为了评估预测性能,我们使用了混淆矩阵和准确性指标,并将我们的结果与多层感知器(MLP)作为基线进行了比较。所得结果表明,对于所有时间序列,叠加CNN-RNN都优于MLP,但在平坦条件下,LSTM模型表现出更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Approach for Short-Term Forecasting Trend Movement of Stock Indeces
This paper is discussed the problems of the short-term forecasting of trend movement stock indices using supervised Machine (Deep) Learning approach. For this purpose, we used Recurrent Neural Networks (RNNs) based on cells of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and stacking CNN- RNN. The main advantage of proposed approach is that CNN allows to automatically extracting features and hidden patterns from the data, which are pass to the input of the block LSTM for making prediction. For evaluation models we used daily data of five stock indices from 01/01/2015 to 1/06/2021. To assess the forecasting performance, we used the confusion matrix and Accuracy metrics and compared our results with Multilayer Perceptron (MLP) as a baseline. According to obtained results, stacking CNN-RNN outperformed MLP for all time series, but the LSTM model shown better results in flat conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信