利用反思性语境中的词向量识别人格特征

Hyeonuk Bhin, Yoonseob Lim, Jong-suk Choi
{"title":"利用反思性语境中的词向量识别人格特征","authors":"Hyeonuk Bhin, Yoonseob Lim, Jong-suk Choi","doi":"10.1109/RITAPP.2019.8932840","DOIUrl":null,"url":null,"abstract":"Predicting personality is meaningful for many social applications that target humans. In this work we proposed a way to model the user's personality with a small number of contexts based on personal SNS post data. We compared and analyzed various combination of word vector and classifier to optimize performance. We find that our model achieves f1-scores 0.72 and 0.74 in unimodal and multimodal case respectively for Big-5 personality traits. We are planning to develop a real time personality recognizer that operates with utterance in the human-robot interaction situation.","PeriodicalId":234023,"journal":{"name":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Personality Traits using Word Vector from Reflective Context\",\"authors\":\"Hyeonuk Bhin, Yoonseob Lim, Jong-suk Choi\",\"doi\":\"10.1109/RITAPP.2019.8932840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting personality is meaningful for many social applications that target humans. In this work we proposed a way to model the user's personality with a small number of contexts based on personal SNS post data. We compared and analyzed various combination of word vector and classifier to optimize performance. We find that our model achieves f1-scores 0.72 and 0.74 in unimodal and multimodal case respectively for Big-5 personality traits. We are planning to develop a real time personality recognizer that operates with utterance in the human-robot interaction situation.\",\"PeriodicalId\":234023,\"journal\":{\"name\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RITAPP.2019.8932840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RITAPP.2019.8932840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预测个性对于许多针对人类的社交应用程序都是有意义的。在这项工作中,我们提出了一种基于个人SNS帖子数据的少量上下文来建模用户个性的方法。我们比较和分析了不同的词向量和分类器组合来优化性能。我们发现,对于大五人格特质,我们的模型在单模态和多模态情况下分别达到了f1-得分0.72和0.74。我们正计划开发一种实时的人格识别器,它可以在人机交互的情况下根据话语进行操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Personality Traits using Word Vector from Reflective Context
Predicting personality is meaningful for many social applications that target humans. In this work we proposed a way to model the user's personality with a small number of contexts based on personal SNS post data. We compared and analyzed various combination of word vector and classifier to optimize performance. We find that our model achieves f1-scores 0.72 and 0.74 in unimodal and multimodal case respectively for Big-5 personality traits. We are planning to develop a real time personality recognizer that operates with utterance in the human-robot interaction situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信