特征选择技术及其在机器学习中的重要性综述

T. N, Roopam K. Gupta
{"title":"特征选择技术及其在机器学习中的重要性综述","authors":"T. N, Roopam K. Gupta","doi":"10.1109/SCEECS48394.2020.189","DOIUrl":null,"url":null,"abstract":"Feature selection is well studied research topic in the field of artificial intelligence, machine learning and pattern recognition. Feature selection it removes the redundant, irrelevant and noisy features from the original features of datasets by choosing the relevant features having the smaller subdivision of dataset. By applying various techniques of feature selection to the datasets, results in lower computational costs, higher classifier accuracy, reduced dimensionality and predictable model. This article investigates, feature selection techniques found in various literatures.","PeriodicalId":167175,"journal":{"name":"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature Selection Techniques and its Importance in Machine Learning: A Survey\",\"authors\":\"T. N, Roopam K. Gupta\",\"doi\":\"10.1109/SCEECS48394.2020.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is well studied research topic in the field of artificial intelligence, machine learning and pattern recognition. Feature selection it removes the redundant, irrelevant and noisy features from the original features of datasets by choosing the relevant features having the smaller subdivision of dataset. By applying various techniques of feature selection to the datasets, results in lower computational costs, higher classifier accuracy, reduced dimensionality and predictable model. This article investigates, feature selection techniques found in various literatures.\",\"PeriodicalId\":167175,\"journal\":{\"name\":\"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCEECS48394.2020.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEECS48394.2020.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

特征选择是人工智能、机器学习和模式识别领域中研究较多的研究课题。特征选择是通过选择数据集细分较小的相关特征,从数据集的原始特征中剔除冗余、不相关和有噪声的特征。通过将各种特征选择技术应用于数据集,降低了计算成本,提高了分类器的精度,降低了维数,提高了模型的可预测性。本文研究了各种文献中发现的特征选择技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection Techniques and its Importance in Machine Learning: A Survey
Feature selection is well studied research topic in the field of artificial intelligence, machine learning and pattern recognition. Feature selection it removes the redundant, irrelevant and noisy features from the original features of datasets by choosing the relevant features having the smaller subdivision of dataset. By applying various techniques of feature selection to the datasets, results in lower computational costs, higher classifier accuracy, reduced dimensionality and predictable model. This article investigates, feature selection techniques found in various literatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信