{"title":"用于电力电子的增强型氮化镓场效应管与硅mosfet的比较研究","authors":"Anirban Pal, G. Narayanan","doi":"10.1109/IICPE.2014.7115858","DOIUrl":null,"url":null,"abstract":"Gallium nitride (GaN) based high-electron-mobility transistor (HEMT) is becoming popular as fast switching devices for power electronic applications. This paper presents a comparative study of the critical parameters such as on-state resistance, reverse conduction drop, leakage current, maximum junction temperature, threshold voltage, gate charge requirement and device capacitances of commercially available enhancement-mode GaN (e-GaN) devices with those of Si MOSFET devices of the same voltage and current ratings. This paper also calculates the switching transition times of the e-GaN HEMTs based on their gate-charge characteristics. Further, the switching losses are also evaluated. These switching transition times and switching energy losses are also compared for the two types of devices. The e-GaN devices show excellent reduction in switching times and switching losses over the Si MOSFET devices, indicating their suitability for high-frequency power conversion. The e-GaN devices also reduce the on-state loss in most cases. However, the reverse conduction drop and leakage currents are higher with eGaN devices than with Si devices.","PeriodicalId":206767,"journal":{"name":"2014 IEEE 6th India International Conference on Power Electronics (IICPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comparative study of enhancement-mode gallium nitride FETs and silicon MOSFETs for power electronic applications\",\"authors\":\"Anirban Pal, G. Narayanan\",\"doi\":\"10.1109/IICPE.2014.7115858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium nitride (GaN) based high-electron-mobility transistor (HEMT) is becoming popular as fast switching devices for power electronic applications. This paper presents a comparative study of the critical parameters such as on-state resistance, reverse conduction drop, leakage current, maximum junction temperature, threshold voltage, gate charge requirement and device capacitances of commercially available enhancement-mode GaN (e-GaN) devices with those of Si MOSFET devices of the same voltage and current ratings. This paper also calculates the switching transition times of the e-GaN HEMTs based on their gate-charge characteristics. Further, the switching losses are also evaluated. These switching transition times and switching energy losses are also compared for the two types of devices. The e-GaN devices show excellent reduction in switching times and switching losses over the Si MOSFET devices, indicating their suitability for high-frequency power conversion. The e-GaN devices also reduce the on-state loss in most cases. However, the reverse conduction drop and leakage currents are higher with eGaN devices than with Si devices.\",\"PeriodicalId\":206767,\"journal\":{\"name\":\"2014 IEEE 6th India International Conference on Power Electronics (IICPE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th India International Conference on Power Electronics (IICPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICPE.2014.7115858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th India International Conference on Power Electronics (IICPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICPE.2014.7115858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative study of enhancement-mode gallium nitride FETs and silicon MOSFETs for power electronic applications
Gallium nitride (GaN) based high-electron-mobility transistor (HEMT) is becoming popular as fast switching devices for power electronic applications. This paper presents a comparative study of the critical parameters such as on-state resistance, reverse conduction drop, leakage current, maximum junction temperature, threshold voltage, gate charge requirement and device capacitances of commercially available enhancement-mode GaN (e-GaN) devices with those of Si MOSFET devices of the same voltage and current ratings. This paper also calculates the switching transition times of the e-GaN HEMTs based on their gate-charge characteristics. Further, the switching losses are also evaluated. These switching transition times and switching energy losses are also compared for the two types of devices. The e-GaN devices show excellent reduction in switching times and switching losses over the Si MOSFET devices, indicating their suitability for high-frequency power conversion. The e-GaN devices also reduce the on-state loss in most cases. However, the reverse conduction drop and leakage currents are higher with eGaN devices than with Si devices.