基于自适应正则化参数的全变分L1保真度椒盐去噪

D. N. Thanh, V. B. Surya Prasath, L. Thanh
{"title":"基于自适应正则化参数的全变分L1保真度椒盐去噪","authors":"D. N. Thanh, V. B. Surya Prasath, L. Thanh","doi":"10.1109/NICS.2018.8606870","DOIUrl":null,"url":null,"abstract":"Total variation (TV) is an effective tool to solve the image denoising and many other image processing problems. For the denoising problem, it is necessary to create automatic image processing methods based on parameters estimation of the corresponding models. For TV image denoising problem, almost methods focus on TV-L2 norm. The works for parameter estimation of denoising model based on TV-L1 norm is very little. The denoising model with TV-L1 norm is impressive to treat the salt-and-pepper noise. In this paper, we propose a parameter estimation method based on characteristics of the salt-and-pepper noise. This method is especially effective for the images without very high contrast and with high noise level. We will handle the comparison to other salt-and-pepper denoising methods, such as TV-L1 method and the BPDF method to prove the effectiveness of the proposed parameter estimation method for the adaptive TVL1 denoising model.","PeriodicalId":137666,"journal":{"name":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Total Variation L1 Fidelity Salt-and-Pepper Denoising with Adaptive Regularization Parameter\",\"authors\":\"D. N. Thanh, V. B. Surya Prasath, L. Thanh\",\"doi\":\"10.1109/NICS.2018.8606870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total variation (TV) is an effective tool to solve the image denoising and many other image processing problems. For the denoising problem, it is necessary to create automatic image processing methods based on parameters estimation of the corresponding models. For TV image denoising problem, almost methods focus on TV-L2 norm. The works for parameter estimation of denoising model based on TV-L1 norm is very little. The denoising model with TV-L1 norm is impressive to treat the salt-and-pepper noise. In this paper, we propose a parameter estimation method based on characteristics of the salt-and-pepper noise. This method is especially effective for the images without very high contrast and with high noise level. We will handle the comparison to other salt-and-pepper denoising methods, such as TV-L1 method and the BPDF method to prove the effectiveness of the proposed parameter estimation method for the adaptive TVL1 denoising model.\",\"PeriodicalId\":137666,\"journal\":{\"name\":\"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS.2018.8606870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2018.8606870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

全变分(TV)是解决图像去噪和许多其他图像处理问题的有效工具。对于去噪问题,需要建立基于相应模型参数估计的自动图像处理方法。对于电视图像去噪问题,大多数方法都集中在TV- l2范数上。基于TV-L1范数的去噪模型参数估计工作很少。TV-L1范数去噪模型对椒盐噪声的处理效果令人印象深刻。本文提出了一种基于椒盐噪声特征的参数估计方法。该方法对对比度不高、噪声大的图像尤其有效。我们将与其他椒盐去噪方法,如TV-L1方法和BPDF方法进行比较,以证明所提出的参数估计方法对自适应TVL1去噪模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total Variation L1 Fidelity Salt-and-Pepper Denoising with Adaptive Regularization Parameter
Total variation (TV) is an effective tool to solve the image denoising and many other image processing problems. For the denoising problem, it is necessary to create automatic image processing methods based on parameters estimation of the corresponding models. For TV image denoising problem, almost methods focus on TV-L2 norm. The works for parameter estimation of denoising model based on TV-L1 norm is very little. The denoising model with TV-L1 norm is impressive to treat the salt-and-pepper noise. In this paper, we propose a parameter estimation method based on characteristics of the salt-and-pepper noise. This method is especially effective for the images without very high contrast and with high noise level. We will handle the comparison to other salt-and-pepper denoising methods, such as TV-L1 method and the BPDF method to prove the effectiveness of the proposed parameter estimation method for the adaptive TVL1 denoising model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信