基于fpga的K-means聚类,使用基于树的数据结构

F. Winterstein, Samuel Bayliss, G. Constantinides
{"title":"基于fpga的K-means聚类,使用基于树的数据结构","authors":"F. Winterstein, Samuel Bayliss, G. Constantinides","doi":"10.1109/FPL.2013.6645501","DOIUrl":null,"url":null,"abstract":"K-means clustering is a popular technique for partitioning a data set into subsets of similar features. Due to their simple control flow and inherent fine-grain parallelism, K-means algorithms are well suited for hardware implementations, such as on field programmable gate arrays (FPGAs), to accelerate the computationally intensive calculation. However, the available hardware resources in massively parallel implementations are easily exhausted for large problem sizes. This paper presents an FPGA implementation of an efficient variant of K-means clustering which prunes the search space using a binary kd-tree data structure to reduce the computational burden. Our implementation uses on-chip dynamic memory allocation to ensure efficient use of memory resources. We describe the trade-off between data-level parallelism and search space reduction at the expense of increased control overhead. A data-sensitive analysis shows that our approach requires up to five times fewer computational FPGA resources than a conventional massively parallel implementation for the same throughput constraint.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"FPGA-based K-means clustering using tree-based data structures\",\"authors\":\"F. Winterstein, Samuel Bayliss, G. Constantinides\",\"doi\":\"10.1109/FPL.2013.6645501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-means clustering is a popular technique for partitioning a data set into subsets of similar features. Due to their simple control flow and inherent fine-grain parallelism, K-means algorithms are well suited for hardware implementations, such as on field programmable gate arrays (FPGAs), to accelerate the computationally intensive calculation. However, the available hardware resources in massively parallel implementations are easily exhausted for large problem sizes. This paper presents an FPGA implementation of an efficient variant of K-means clustering which prunes the search space using a binary kd-tree data structure to reduce the computational burden. Our implementation uses on-chip dynamic memory allocation to ensure efficient use of memory resources. We describe the trade-off between data-level parallelism and search space reduction at the expense of increased control overhead. A data-sensitive analysis shows that our approach requires up to five times fewer computational FPGA resources than a conventional massively parallel implementation for the same throughput constraint.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

K-means聚类是一种将数据集划分为具有相似特征的子集的流行技术。由于其简单的控制流程和固有的细粒度并行性,K-means算法非常适合于硬件实现,例如现场可编程门阵列(fpga),以加速计算密集型的计算。然而,大规模并行实现中的可用硬件资源很容易被大型问题耗尽。本文提出了一种有效的k -均值聚类的FPGA实现,它使用二叉kd树数据结构来修剪搜索空间以减少计算负担。我们的实现使用片上动态内存分配来确保内存资源的有效使用。我们描述了以增加控制开销为代价的数据级并行性和搜索空间缩减之间的权衡。数据敏感分析表明,对于相同的吞吐量约束,我们的方法需要的计算FPGA资源比传统的大规模并行实现少五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based K-means clustering using tree-based data structures
K-means clustering is a popular technique for partitioning a data set into subsets of similar features. Due to their simple control flow and inherent fine-grain parallelism, K-means algorithms are well suited for hardware implementations, such as on field programmable gate arrays (FPGAs), to accelerate the computationally intensive calculation. However, the available hardware resources in massively parallel implementations are easily exhausted for large problem sizes. This paper presents an FPGA implementation of an efficient variant of K-means clustering which prunes the search space using a binary kd-tree data structure to reduce the computational burden. Our implementation uses on-chip dynamic memory allocation to ensure efficient use of memory resources. We describe the trade-off between data-level parallelism and search space reduction at the expense of increased control overhead. A data-sensitive analysis shows that our approach requires up to five times fewer computational FPGA resources than a conventional massively parallel implementation for the same throughput constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信