基于Bloch-Siegert B1成像的MRI复杂多线圈B1场估计通道的优化线性组合

Feng Zhao, J. Fessler, S. Wright, J. Rispoli, D. Noll
{"title":"基于Bloch-Siegert B1成像的MRI复杂多线圈B1场估计通道的优化线性组合","authors":"Feng Zhao, J. Fessler, S. Wright, J. Rispoli, D. Noll","doi":"10.1109/ISBI.2013.6556631","DOIUrl":null,"url":null,"abstract":"Bloch-Siegert B1 mapping for multiple-channel parallel excitation systems usually produces noisy estimates in low intensity regions. Methods that use linear combinations of multiple coils have been proposed to mitigate this problem. However, little work has been done to optimize these coil combinations to improve the signal-to-noise ratio of B1 mapping in a robust way. In this paper, we propose a Cramer-Rao Lower Bound analysis based method to optimize the coil combination matrix by minimizing the variance of B1 map estimation for the previously proposed Bloch-Siegert B1 mapping method. We illustrate how optimizing the coil combinations yields improved B1 estimates in a simulation of brain imaging with a 3T MRI scan.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimized linear combinations of channels for complex multiple-coil B1 field estimation with Bloch-Siegert B1 mapping in MRI\",\"authors\":\"Feng Zhao, J. Fessler, S. Wright, J. Rispoli, D. Noll\",\"doi\":\"10.1109/ISBI.2013.6556631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bloch-Siegert B1 mapping for multiple-channel parallel excitation systems usually produces noisy estimates in low intensity regions. Methods that use linear combinations of multiple coils have been proposed to mitigate this problem. However, little work has been done to optimize these coil combinations to improve the signal-to-noise ratio of B1 mapping in a robust way. In this paper, we propose a Cramer-Rao Lower Bound analysis based method to optimize the coil combination matrix by minimizing the variance of B1 map estimation for the previously proposed Bloch-Siegert B1 mapping method. We illustrate how optimizing the coil combinations yields improved B1 estimates in a simulation of brain imaging with a 3T MRI scan.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多通道并联励磁系统的Bloch-Siegert B1映射通常在低强度区域产生噪声估计。已经提出了使用多个线圈的线性组合的方法来缓解这个问题。然而,为了以稳健的方式提高B1映射的信噪比,对这些线圈组合进行优化的工作很少。在本文中,我们提出了一种基于Cramer-Rao下界分析的方法,通过最小化B1映射估计的方差来优化线圈组合矩阵。我们说明了优化线圈组合如何在3T MRI扫描的脑成像模拟中产生改进的B1估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized linear combinations of channels for complex multiple-coil B1 field estimation with Bloch-Siegert B1 mapping in MRI
Bloch-Siegert B1 mapping for multiple-channel parallel excitation systems usually produces noisy estimates in low intensity regions. Methods that use linear combinations of multiple coils have been proposed to mitigate this problem. However, little work has been done to optimize these coil combinations to improve the signal-to-noise ratio of B1 mapping in a robust way. In this paper, we propose a Cramer-Rao Lower Bound analysis based method to optimize the coil combination matrix by minimizing the variance of B1 map estimation for the previously proposed Bloch-Siegert B1 mapping method. We illustrate how optimizing the coil combinations yields improved B1 estimates in a simulation of brain imaging with a 3T MRI scan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信