非参数正交切片与体积可变形配准:在PET/MR呼吸运动补偿中的应用

S. Miao, Z. J. Wang, Rui Liao
{"title":"非参数正交切片与体积可变形配准:在PET/MR呼吸运动补偿中的应用","authors":"S. Miao, Z. J. Wang, Rui Liao","doi":"10.1109/ChinaSIP.2014.6889299","DOIUrl":null,"url":null,"abstract":"The recent advance of hybrid PET/MR system enables MR-based motion correction of PET data. In this paper, we propose a PET/MR motion compensation (MC) strategy and a non-parametric orthogonal slice to volume deformable registration technique for respiratory motion estimation from the MRIs. In our imaging strategy, a static 3D MRI is acquired before the PET acquisition, and a series of dynamic 2D MRIs are acquired in sagittal and coronal planes by turns during the PET acquisition. The 2D MRIs in orthogonal orientations are then registered with the static 3D MRI to derive a 3D+t deformation field for PET MC. Unlike most previously reported works in the literature, our MC strategy does not rely on respiratory gating, and therefore is able to address irregular and/or varying breathing patterns. We validated our approach using MRI data acquired from 5 volunteers and synthetic simultaneous PET data, demonstrating up to 30.5% improvement in registration accuracy and sharper motion corrected PET images over the reported MC approaches.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-parametric orthogonal slice to volume deformable registration: Application to PET/MR respiratory motion compensation\",\"authors\":\"S. Miao, Z. J. Wang, Rui Liao\",\"doi\":\"10.1109/ChinaSIP.2014.6889299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent advance of hybrid PET/MR system enables MR-based motion correction of PET data. In this paper, we propose a PET/MR motion compensation (MC) strategy and a non-parametric orthogonal slice to volume deformable registration technique for respiratory motion estimation from the MRIs. In our imaging strategy, a static 3D MRI is acquired before the PET acquisition, and a series of dynamic 2D MRIs are acquired in sagittal and coronal planes by turns during the PET acquisition. The 2D MRIs in orthogonal orientations are then registered with the static 3D MRI to derive a 3D+t deformation field for PET MC. Unlike most previously reported works in the literature, our MC strategy does not rely on respiratory gating, and therefore is able to address irregular and/or varying breathing patterns. We validated our approach using MRI data acquired from 5 volunteers and synthetic simultaneous PET data, demonstrating up to 30.5% improvement in registration accuracy and sharper motion corrected PET images over the reported MC approaches.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PET/MR混合系统的最新进展使PET数据的基于MR的运动校正成为可能。本文提出了一种PET/MR运动补偿(MC)策略和一种非参数正交切片-体积可变形配准技术,用于mri呼吸运动估计。在我们的成像策略中,在PET采集之前获取静态3D MRI,在PET采集期间轮流在矢状面和冠状面获取一系列动态2D MRI。然后将正交方向的2D MRI与静态3D MRI进行注册,以获得PET MC的3D+t变形场。与文献中大多数先前报道的工作不同,我们的MC策略不依赖于呼吸门控,因此能够解决不规则和/或变化的呼吸模式。我们使用从5名志愿者获得的MRI数据和合成的同时PET数据验证了我们的方法,证明与报道的MC方法相比,配准精度和更清晰的运动校正PET图像提高了30.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-parametric orthogonal slice to volume deformable registration: Application to PET/MR respiratory motion compensation
The recent advance of hybrid PET/MR system enables MR-based motion correction of PET data. In this paper, we propose a PET/MR motion compensation (MC) strategy and a non-parametric orthogonal slice to volume deformable registration technique for respiratory motion estimation from the MRIs. In our imaging strategy, a static 3D MRI is acquired before the PET acquisition, and a series of dynamic 2D MRIs are acquired in sagittal and coronal planes by turns during the PET acquisition. The 2D MRIs in orthogonal orientations are then registered with the static 3D MRI to derive a 3D+t deformation field for PET MC. Unlike most previously reported works in the literature, our MC strategy does not rely on respiratory gating, and therefore is able to address irregular and/or varying breathing patterns. We validated our approach using MRI data acquired from 5 volunteers and synthetic simultaneous PET data, demonstrating up to 30.5% improvement in registration accuracy and sharper motion corrected PET images over the reported MC approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信