暂态故障注入对容错微机系统VHDL模型的影响研究

D. Gil, J. Gracia, J. Baraza, P. Gil
{"title":"暂态故障注入对容错微机系统VHDL模型的影响研究","authors":"D. Gil, J. Gracia, J. Baraza, P. Gil","doi":"10.1109/OLT.2000.856615","DOIUrl":null,"url":null,"abstract":"This work presents a campaign of fault injection to validate the dependability of a fault tolerant microcomputer system. The system is duplex with cold stand-by sparing, parity detection and a watchdog timer. The faults have been injected on a chip-level VHDL model, using an injection tool designed for this purpose. We have carried out a set of injection experiments (with 3000 injections each), injecting transient faults of types stuck-at, bit-flip, indetermination and delay on both the signals and variables of the system, running two different workloads. We have analysed the pathology of the propagated errors, measured their latency, and calculated both detection and recovery coverage. For instance, system detection coverages (including non-effective errors) up to 98%, and system recovery coverage up to 94% have been obtained for short transient faults.","PeriodicalId":334770,"journal":{"name":"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A study of the effects of transient fault injection into the VHDL model of a fault-tolerant microcomputer system\",\"authors\":\"D. Gil, J. Gracia, J. Baraza, P. Gil\",\"doi\":\"10.1109/OLT.2000.856615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a campaign of fault injection to validate the dependability of a fault tolerant microcomputer system. The system is duplex with cold stand-by sparing, parity detection and a watchdog timer. The faults have been injected on a chip-level VHDL model, using an injection tool designed for this purpose. We have carried out a set of injection experiments (with 3000 injections each), injecting transient faults of types stuck-at, bit-flip, indetermination and delay on both the signals and variables of the system, running two different workloads. We have analysed the pathology of the propagated errors, measured their latency, and calculated both detection and recovery coverage. For instance, system detection coverages (including non-effective errors) up to 98%, and system recovery coverage up to 94% have been obtained for short transient faults.\",\"PeriodicalId\":334770,\"journal\":{\"name\":\"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OLT.2000.856615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OLT.2000.856615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了一种故障注入运动来验证容错微机系统的可靠性。该系统是双工的,具有冷待机保护、奇偶检测和看门狗定时器。使用为此目的设计的注入工具,在芯片级VHDL模型上注入故障。我们进行了一组注入实验(每次注入3000次),在运行两种不同工作负载的情况下,对系统的信号和变量同时注入卡滞、位翻转、不确定和延迟类型的瞬态故障。我们分析了传播错误的病理,测量了它们的延迟,并计算了检测和恢复覆盖率。例如,系统检测覆盖率(包括非有效错误)可达98%,系统恢复覆盖率可达94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of the effects of transient fault injection into the VHDL model of a fault-tolerant microcomputer system
This work presents a campaign of fault injection to validate the dependability of a fault tolerant microcomputer system. The system is duplex with cold stand-by sparing, parity detection and a watchdog timer. The faults have been injected on a chip-level VHDL model, using an injection tool designed for this purpose. We have carried out a set of injection experiments (with 3000 injections each), injecting transient faults of types stuck-at, bit-flip, indetermination and delay on both the signals and variables of the system, running two different workloads. We have analysed the pathology of the propagated errors, measured their latency, and calculated both detection and recovery coverage. For instance, system detection coverages (including non-effective errors) up to 98%, and system recovery coverage up to 94% have been obtained for short transient faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信