基于DCNN模型的晶圆缺陷分类

Pan Tian, Chen Li, Hao Fu, Xueru Yu, Zhengying Wei, Qiliang Ni, Xu Chen, Yunwei Ding, Ruojia Xu, Rui Sun
{"title":"基于DCNN模型的晶圆缺陷分类","authors":"Pan Tian, Chen Li, Hao Fu, Xueru Yu, Zhengying Wei, Qiliang Ni, Xu Chen, Yunwei Ding, Ruojia Xu, Rui Sun","doi":"10.1109/CSTIC52283.2021.9461447","DOIUrl":null,"url":null,"abstract":"Wafer defect classification is essential in semiconductor manufacturing for fast response of equipment and process stability monitoring, it is also critical for product yield management. Manual defect classification is time-consuming and prone to errors. This study presents an automatic defect classification (ADC) method based on a deep convolution neutral network (DCNN) model. The trained model has proven itself to be able to achieve defect classification performance sufficiently good to serve in the Fab.","PeriodicalId":186529,"journal":{"name":"2021 China Semiconductor Technology International Conference (CSTIC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wafer Defect Classification Based on DCNN Model\",\"authors\":\"Pan Tian, Chen Li, Hao Fu, Xueru Yu, Zhengying Wei, Qiliang Ni, Xu Chen, Yunwei Ding, Ruojia Xu, Rui Sun\",\"doi\":\"10.1109/CSTIC52283.2021.9461447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wafer defect classification is essential in semiconductor manufacturing for fast response of equipment and process stability monitoring, it is also critical for product yield management. Manual defect classification is time-consuming and prone to errors. This study presents an automatic defect classification (ADC) method based on a deep convolution neutral network (DCNN) model. The trained model has proven itself to be able to achieve defect classification performance sufficiently good to serve in the Fab.\",\"PeriodicalId\":186529,\"journal\":{\"name\":\"2021 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC52283.2021.9461447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC52283.2021.9461447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

晶圆缺陷分类是半导体制造中设备快速响应和过程稳定性监控的关键,也是产品良率管理的关键。手工的缺陷分类非常耗时,而且容易出错。提出了一种基于深度卷积神经网络(DCNN)模型的缺陷自动分类方法。经过训练的模型已经证明自己能够实现足够好的缺陷分类性能,可以在Fab中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wafer Defect Classification Based on DCNN Model
Wafer defect classification is essential in semiconductor manufacturing for fast response of equipment and process stability monitoring, it is also critical for product yield management. Manual defect classification is time-consuming and prone to errors. This study presents an automatic defect classification (ADC) method based on a deep convolution neutral network (DCNN) model. The trained model has proven itself to be able to achieve defect classification performance sufficiently good to serve in the Fab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信